/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Copyright (c) 2010 Michael Smith. All rights reserved. // #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "UARTDriver.h" #include "SITL_State.h" extern const AP_HAL::HAL& hal; using namespace HALSITL; bool UARTDriver::_console; /* UARTDriver method implementations */ void UARTDriver::begin(uint32_t baud, uint16_t rxSpace, uint16_t txSpace) { const char *path = _sitlState->_uart_path[_portNumber]; if (strcmp(path, "GPS1") == 0) { /* gps */ _connected = true; _fd = _sitlState->gps_pipe(); } else if (strcmp(path, "GPS2") == 0) { /* 2nd gps */ _connected = true; _fd = _sitlState->gps2_pipe(); } else { /* parse type:args:flags string for path. For example: tcp:5760:wait // tcp listen on port 5760 tcp:0:wait // tcp listen on use base_port + 0 tcpclient:192.168.2.15:5762 uart:/dev/ttyUSB0:57600 sim:ParticleSensor_SDS021: */ char *saveptr = nullptr; char *s = strdup(path); char *devtype = strtok_r(s, ":", &saveptr); char *args1 = strtok_r(nullptr, ":", &saveptr); char *args2 = strtok_r(nullptr, ":", &saveptr); if (strcmp(devtype, "tcp") == 0) { uint16_t port = atoi(args1); bool wait = (args2 && strcmp(args2, "wait") == 0); _tcp_start_connection(port, wait); } else if (strcmp(devtype, "tcpclient") == 0) { if (args2 == nullptr) { AP_HAL::panic("Invalid tcp client path: %s", path); } uint16_t port = atoi(args2); _tcp_start_client(args1, port); } else if (strcmp(devtype, "uart") == 0) { uint32_t baudrate = args2? atoi(args2) : baud; ::printf("UART connection %s:%u\n", args1, baudrate); _uart_path = strdup(args1); _uart_baudrate = baudrate; _uart_start_connection(); } else if (strcmp(devtype, "sim") == 0) { ::printf("SIM connection %s:%s\n", args1, args2); if (!_connected) { _connected = true; _fd = _sitlState->sim_fd(args1, args2); } } else { AP_HAL::panic("Invalid device path: %s", path); } free(s); } _set_nonblocking(_fd); } void UARTDriver::end() { } uint32_t UARTDriver::available(void) { _check_connection(); if (!_connected) { return 0; } return _readbuffer.available(); } uint32_t UARTDriver::txspace(void) { _check_connection(); if (!_connected) { return 0; } return _writebuffer.space(); } int16_t UARTDriver::read(void) { if (available() <= 0) { return -1; } uint8_t c; _readbuffer.read(&c, 1); return c; } void UARTDriver::flush(void) { } size_t UARTDriver::write(uint8_t c) { if (txspace() <= 0) { return 0; } _writebuffer.write(&c, 1); return 1; } size_t UARTDriver::write(const uint8_t *buffer, size_t size) { if (txspace() <= (ssize_t)size) { size = txspace(); } if (size <= 0) { return 0; } if (_unbuffered_writes) { // write buffer straight to the file descriptor const ssize_t nwritten = ::write(_fd, buffer, size); if (nwritten == -1 && errno != EAGAIN && _uart_path) { close(_fd); _fd = -1; _connected = false; } // these have no effect tcdrain(_fd); } else { _writebuffer.write(buffer, size); } return size; } /* start a TCP connection for the serial port. If wait_for_connection is true then block until a client connects */ void UARTDriver::_tcp_start_connection(uint16_t port, bool wait_for_connection) { int one=1; struct sockaddr_in sockaddr; int ret; if (_connected) { return; } _use_send_recv = true; if (_console) { // hack for console access _connected = true; _use_send_recv = false; _listen_fd = -1; _fd = 1; return; } if (_fd != -1) { close(_fd); } if (_listen_fd == -1) { memset(&sockaddr,0,sizeof(sockaddr)); #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif if (port > 1000) { sockaddr.sin_port = htons(port); } else { sockaddr.sin_port = htons(_sitlState->base_port() + port); } sockaddr.sin_family = AF_INET; _listen_fd = socket(AF_INET, SOCK_STREAM, 0); if (_listen_fd == -1) { fprintf(stderr, "socket failed - %s\n", strerror(errno)); exit(1); } /* we want to be able to re-use ports quickly */ if (setsockopt(_listen_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) { fprintf(stderr, "setsockopt failed: %s\n", strerror(errno)); exit(1); } fprintf(stderr, "bind port %u for %u\n", (unsigned)ntohs(sockaddr.sin_port), (unsigned)_portNumber); ret = bind(_listen_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "bind failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } ret = listen(_listen_fd, 5); if (ret == -1) { fprintf(stderr, "listen failed - %s\n", strerror(errno)); exit(1); } fprintf(stderr, "Serial port %u on TCP port %u\n", _portNumber, _sitlState->base_port() + _portNumber); fflush(stdout); } if (wait_for_connection) { fprintf(stdout, "Waiting for connection ....\n"); fflush(stdout); _fd = accept(_listen_fd, nullptr, nullptr); if (_fd == -1) { fprintf(stderr, "accept() error - %s", strerror(errno)); exit(1); } setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)); _connected = true; } } /* start a TCP client connection for the serial port. */ void UARTDriver::_tcp_start_client(const char *address, uint16_t port) { int one=1; struct sockaddr_in sockaddr; int ret; if (_connected) { return; } _use_send_recv = true; if (_fd != -1) { close(_fd); } memset(&sockaddr,0,sizeof(sockaddr)); #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(port); sockaddr.sin_family = AF_INET; sockaddr.sin_addr.s_addr = inet_addr(address); _fd = socket(AF_INET, SOCK_STREAM, 0); if (_fd == -1) { fprintf(stderr, "socket failed - %s\n", strerror(errno)); exit(1); } /* we want to be able to re-use ports quickly */ setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); ret = connect(_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "connect failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)); _connected = true; } /* start a UART connection for the serial port */ void UARTDriver::_uart_start_connection(void) { struct termios t {}; if (!_connected) { _fd = ::open(_uart_path, O_RDWR | O_CLOEXEC); if (_fd == -1) { return; } // use much smaller buffer sizes on real UARTs _writebuffer.set_size(1024); _readbuffer.set_size(512); ::printf("Opened %s\n", _uart_path); } if (_fd == -1) { AP_HAL::panic("Unable to open UART %s", _uart_path); } // set non-blocking int flags = fcntl(_fd, F_GETFL, 0); flags = flags | O_NONBLOCK; fcntl(_fd, F_SETFL, flags); // disable LF -> CR/LF tcgetattr(_fd, &t); t.c_iflag &= ~(BRKINT | ICRNL | IMAXBEL | IXON | IXOFF); t.c_oflag &= ~(OPOST | ONLCR); t.c_lflag &= ~(ISIG | ICANON | IEXTEN | ECHO | ECHOE | ECHOK | ECHOCTL | ECHOKE); t.c_cc[VMIN] = 0; if (_sitlState->use_rtscts()) { t.c_cflag |= CRTSCTS; } tcsetattr(_fd, TCSANOW, &t); // set baudrate set_speed(_uart_baudrate); _connected = true; _use_send_recv = false; } /* see if a new connection is coming in */ void UARTDriver::_check_connection(void) { if (_connected) { // we only want 1 connection at a time return; } if (_select_check(_listen_fd)) { _fd = accept(_listen_fd, nullptr, nullptr); if (_fd != -1) { int one = 1; _connected = true; setsockopt(_fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)); setsockopt(_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); fprintf(stdout, "New connection on serial port %u\n", _portNumber); } } } /* use select() to see if something is pending */ bool UARTDriver::_select_check(int fd) { if (fd == -1) { return false; } fd_set fds; struct timeval tv; FD_ZERO(&fds); FD_SET(fd, &fds); // zero time means immediate return from select() tv.tv_sec = 0; tv.tv_usec = 0; if (select(fd+1, &fds, nullptr, nullptr, &tv) == 1) { return true; } return false; } void UARTDriver::_set_nonblocking(int fd) { unsigned v = fcntl(fd, F_GETFL, 0); fcntl(fd, F_SETFL, v | O_NONBLOCK); } bool UARTDriver::set_unbuffered_writes(bool on) { if (_fd == -1) { return false; } _unbuffered_writes = on; // this has no effect unsigned v = fcntl(_fd, F_GETFL, 0); v &= ~O_NONBLOCK; #if defined(__APPLE__) && defined(__MACH__) fcntl(_fd, F_SETFL | F_NOCACHE, v | O_SYNC); #else fcntl(_fd, F_SETFL, v | O_DIRECT | O_SYNC); #endif return _unbuffered_writes; } void UARTDriver::_check_reconnect(void) { if (!_uart_path) { return; } _uart_start_connection(); } void UARTDriver::_timer_tick(void) { if (!_connected) { _check_reconnect(); return; } uint32_t navail; ssize_t nwritten; const uint8_t *readptr = _writebuffer.readptr(navail); if (readptr && navail > 0) { if (!_use_send_recv) { nwritten = ::write(_fd, readptr, navail); if (nwritten == -1 && errno != EAGAIN && _uart_path) { close(_fd); _fd = -1; _connected = false; } } else { nwritten = send(_fd, readptr, navail, MSG_DONTWAIT); } if (nwritten > 0) { _writebuffer.advance(nwritten); } } uint32_t space = _readbuffer.space(); if (space == 0) { return; } char buf[space]; ssize_t nread = 0; if (!_use_send_recv) { int fd = _console?0:_fd; nread = ::read(fd, buf, space); if (nread == -1 && errno != EAGAIN && _uart_path) { close(_fd); _fd = -1; _connected = false; } } else { if (_select_check(_fd)) { nread = recv(_fd, buf, space, MSG_DONTWAIT); if (nread <= 0) { // the socket has reached EOF close(_fd); _connected = false; fprintf(stdout, "Closed connection on serial port %u\n", _portNumber); fflush(stdout); return; } } else { nread = 0; } } if (nread > 0) { _readbuffer.write((uint8_t *)buf, nread); } } #endif // CONFIG_HAL_BOARD