/* OreoLED PX4 driver */ /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include #include "OreoLED_PX4.h" #include #include #include #include #include #include #include #include #include "AP_Notify.h" #define OREOLED_BACKLEFT 0 // back left led instance number #define OREOLED_BACKRIGHT 1 // back right led instance number #define OREOLED_FRONTRIGHT 2 // front right led instance number #define OREOLED_FRONTLEFT 3 // front left led instance number #define PERIOD_SLOW 800 // slow flash rate #define PERIOD_FAST 500 // fast flash rate #define PERIOD_SUPER 150 // super fast rate #define PO_ALTERNATE 180 // 180 degree phase offset extern const AP_HAL::HAL& hal; // constructor OreoLED_PX4::OreoLED_PX4(uint8_t theme): NotifyDevice(), _overall_health(false), _oreoled_fd(-1), _send_required(false), _state_desired_semaphore(false), _pattern_override(0), _oreo_theme(theme) { // initialise desired and sent state memset(_state_desired,0,sizeof(_state_desired)); memset(_state_sent,0,sizeof(_state_sent)); } extern "C" int oreoled_main(int, char **); // // Initialize the LEDs // bool OreoLED_PX4::init() { #if defined(CONFIG_ARCH_BOARD_PX4FMU_V2) if (!AP_BoardConfig::px4_start_driver(oreoled_main, "oreoled", "start autoupdate")) { hal.console->printf("Unable to start oreoled driver\n"); } else { // give it time to initialise hal.scheduler->delay(500); } #endif // open the device _oreoled_fd = open(OREOLED0_DEVICE_PATH, O_RDWR); if (_oreoled_fd == -1) { hal.console->printf("Unable to open " OREOLED0_DEVICE_PATH); _overall_health = false; } else { // set overall health _overall_health = true; // register timer hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&OreoLED_PX4::update_timer, void)); } // return health return _overall_health; } // UPDATE device according to timed_updated. Called at 50Hz void OreoLED_PX4::update() { if (!_overall_health) { return; } // don't go any further if LED driver reports unhealthy if (slow_counter()) { return; } // slow rate from 50hz to 10hz sync_counter(); // syncronizes LEDs every 10 seconds if (mode_firmware_update()) { return; } // don't go any further if the Pixhawk is in firmware update if (mode_init()) { return; } // don't go any further if the Pixhawk is initializing if (mode_failsafe_radio()) { return; } // don't go any further if the Pixhawk is is in radio failsafe set_standard_colors(); // set the rear LED standard colors as described above if (mode_failsafe_batt()) { return; } // stop here if the battery is low. if (_pattern_override) { return; } // stop here if in mavlink LED control override. if (mode_auto_flight()) { return; } // stop here if in an autopilot mode. mode_pilot_flight(); // stop here if in an pilot controlled mode. } // Slow the update rate from 50hz to 10hz // Returns true if counting up // Returns false and resets one counter hits 5 bool OreoLED_PX4::slow_counter() { static uint8_t update_counter; update_counter++; if (update_counter < 5) { return true; } else { update_counter = 0; return false; } } // Calls resyncing the LEDs every 10 seconds // Always returns false, no action needed. void OreoLED_PX4::sync_counter() { static uint8_t counter = 80; counter++; if (counter > 100) { counter = 0; send_sync(); } } // Procedure for when Pixhawk is in FW update / bootloader // Makes all LEDs go into color cycle mode // Returns true if firmware update in progress. False if not bool OreoLED_PX4::mode_firmware_update() { if (AP_Notify::flags.firmware_update) { set_macro(OREOLED_INSTANCE_ALL, OREOLED_PARAM_MACRO_COLOUR_CYCLE); return true; } else { return false; } } // Procedure for when Pixhawk is booting up and initializing // Makes all LEDs rapidly strobe blue. Returns LED_INIT_STAGE // 1 = Default, initialization has not yet begun // 2 = Initialization flag found, initialization in progress // 3 = Initialization flag no longer found, initialization complete bool OreoLED_PX4::mode_init() { static uint16_t stage = 1; // Pixhawk has not begun initializing yet. Strobe all blue if ((!AP_Notify::flags.initialising) && ((stage == 1))) { set_rgb(OREOLED_INSTANCE_ALL, OREOLED_PATTERN_STROBE, 0, 0, 255,0,0,0,PERIOD_SUPER,0); // Pixhawk has begun initializing } else if ((AP_Notify::flags.initialising) && ((stage == 1))) { stage = 2; set_rgb(OREOLED_INSTANCE_ALL, OREOLED_PATTERN_STROBE, 0, 0, 255,0,0,0,PERIOD_SUPER,0); // Pixhawk still initializing } else if ((AP_Notify::flags.initialising) && ((stage == 2))) { set_rgb(OREOLED_INSTANCE_ALL, OREOLED_PATTERN_STROBE, 0, 0, 255,0,0,0,PERIOD_SUPER,0); // Pixhawk has completed initialization } else if((!AP_Notify::flags.initialising) && ((stage == 2))) { stage = 0; set_rgb(OREOLED_INSTANCE_ALL, OREOLED_PATTERN_SOLID, 0, 0, 255); } else { stage = 0; } return stage; } // Procedure for when Pixhawk is in radio failsafe // LEDs perform alternating Red X pattern bool OreoLED_PX4::mode_failsafe_radio() { if (AP_Notify::flags.failsafe_radio) { set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,0); } return AP_Notify::flags.failsafe_radio; } // Procedure to set standard rear LED colors in aviation theme // Back LEDS White for normal, yellow for GPS not usable, purple for EKF bad] // Returns true GPS or EKF problem, returns false if all ok bool OreoLED_PX4::set_standard_colors() { if (!(AP_Notify::flags.gps_fusion)) { _rear_color_r = 255; _rear_color_g = 50; _rear_color_b = 0; return true; } else if (AP_Notify::flags.ekf_bad){ _rear_color_r = 255; _rear_color_g = 0; _rear_color_b = 255; return true; } else { _rear_color_r = 255; _rear_color_g = 255; _rear_color_b = 255; return false; } } // Procedure to set low battery LED output // Colors standard // Fast strobe alternating front/back bool OreoLED_PX4::mode_failsafe_batt() { if (AP_Notify::flags.failsafe_battery){ switch (_oreo_theme) { case OreoLED_Aircraft: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 0, 255, 0,0,0,0,PERIOD_FAST,0); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE); break; case OreoLED_Automobile: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE); break; default: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE); break; } } return AP_Notify::flags.failsafe_battery; } // Procedure for when Pixhawk is in an autopilot mode // Makes all LEDs strobe super fast using standard colors bool OreoLED_PX4::mode_auto_flight() { switch (_oreo_theme) { case OreoLED_Aircraft: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 0, 255, 0,0,0,0,PERIOD_SUPER,0); if ((AP_Notify::flags.pre_arm_check && AP_Notify::flags.pre_arm_gps_check) || AP_Notify::flags.armed) { set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_SUPER,PO_ALTERNATE); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_SUPER,PO_ALTERNATE); } else { set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b); } break; case OreoLED_Automobile: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE); break; default: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE); break; } return AP_Notify::flags.autopilot_mode; } // Procedure for when Pixhawk is in a pilot controlled mode // All LEDs use standard pattern and colors bool OreoLED_PX4::mode_pilot_flight() { switch (_oreo_theme) { case OreoLED_Aircraft: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 0, 255, 0); if ((AP_Notify::flags.pre_arm_check && AP_Notify::flags.pre_arm_gps_check) || AP_Notify::flags.armed) { set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,0); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE); } else { set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b); } break; case OreoLED_Automobile: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 255, 255); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 255, 255, 255); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, 255, 0, 0); break; default: set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 255, 255); set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 255, 255, 255); set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0); set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, 255, 0, 0); break; } return true; } // set_rgb - Solid color settings only void OreoLED_PX4::set_rgb(uint8_t instance, uint8_t red, uint8_t green, uint8_t blue) { set_rgb(instance, OREOLED_PATTERN_SOLID, red, green, blue); } // set_rgb - Set a color and selected pattern. void OreoLED_PX4::set_rgb(uint8_t instance, oreoled_pattern pattern, uint8_t red, uint8_t green, uint8_t blue) { // get semaphore _state_desired_semaphore = true; // check for all instances if (instance == OREOLED_INSTANCE_ALL) { // store desired rgb for all LEDs for (uint8_t i=0; i> 8; cmd.buff[15] = (_state_desired[i].period & 0x00FF); cmd.buff[16] = OREOLED_PARAM_PHASEOFFSET; cmd.buff[17] = (_state_desired[i].phase_offset & 0xFF00) >> 8; cmd.buff[18] = (_state_desired[i].phase_offset & 0x00FF); cmd.num_bytes = 19; ioctl(_oreoled_fd, OREOLED_SEND_BYTES, (unsigned long)&cmd); } break; case OREOLED_MODE_SYNC: { ioctl(_oreoled_fd, OREOLED_FORCE_SYNC, 0); } break; default: break; }; // save state change _state_sent[i] = _state_desired[i]; } } // flag updates sent _send_required = false; } // Handle an LED_CONTROL mavlink message void OreoLED_PX4::handle_led_control(mavlink_message_t *msg) { // exit immediately if unhealthy if (!_overall_health) { return; } // decode mavlink message mavlink_led_control_t packet; mavlink_msg_led_control_decode(msg, &packet); // exit immediately if instance is invalid if (packet.instance >= OREOLED_NUM_LEDS && packet.instance != OREOLED_INSTANCE_ALL) { return; } // if pattern is OFF, we clear pattern override so normal lighting should resume if (packet.pattern == LED_CONTROL_PATTERN_OFF) { _pattern_override = 0; clear_state(); return; } if (packet.pattern == LED_CONTROL_PATTERN_CUSTOM) { // Here we handle two different "sub commands", // depending on the bytes in the first CUSTOM_HEADER_LENGTH // of the custom pattern byte buffer // Return if we don't have at least CUSTOM_HEADER_LENGTH bytes if (packet.custom_len < CUSTOM_HEADER_LENGTH) { return; } // check for the RGB0 sub-command if (memcmp(packet.custom_bytes, "RGB0", CUSTOM_HEADER_LENGTH) == 0) { // check to make sure the total length matches the length of the RGB0 command + data values if (packet.custom_len != CUSTOM_HEADER_LENGTH + 4) { return; } // check for valid pattern id if (packet.custom_bytes[CUSTOM_HEADER_LENGTH] >= OREOLED_PATTERN_ENUM_COUNT) { return; } // convert the first byte after the command to a oreoled_pattern oreoled_pattern pattern = (oreoled_pattern)packet.custom_bytes[CUSTOM_HEADER_LENGTH]; // call the set_rgb function, using the rest of the bytes as the RGB values set_rgb(packet.instance, pattern, packet.custom_bytes[CUSTOM_HEADER_LENGTH + 1], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 2], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 3]); } else if (memcmp(packet.custom_bytes, "RGB1", CUSTOM_HEADER_LENGTH) == 0) { // check for the RGB1 sub-command // check to make sure the total length matches the length of the RGB1 command + data values if (packet.custom_len != CUSTOM_HEADER_LENGTH + 11) { return; } // check for valid pattern id if (packet.custom_bytes[CUSTOM_HEADER_LENGTH] >= OREOLED_PATTERN_ENUM_COUNT) { return; } // convert the first byte after the command to a oreoled_pattern oreoled_pattern pattern = (oreoled_pattern)packet.custom_bytes[CUSTOM_HEADER_LENGTH]; // uint16_t values are stored in custom_bytes in little endian order // assume the flight controller is little endian when decoding values uint16_t period = ((0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 7]) << 8) | (0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 8]); uint16_t phase_offset = ((0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 9]) << 8) | (0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 10]); // call the set_rgb function, using the rest of the bytes as the RGB values set_rgb(packet.instance, pattern, packet.custom_bytes[CUSTOM_HEADER_LENGTH + 1], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 2], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 3], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 4], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 5], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 6], period, phase_offset); } else if (memcmp(packet.custom_bytes, "SYNC", CUSTOM_HEADER_LENGTH) == 0) { // check for the SYNC sub-command // check to make sure the total length matches the length of the SYN0 command + data values if (packet.custom_len != CUSTOM_HEADER_LENGTH + 0) { return; } send_sync(); } else { // unrecognized command return; } } else { // other patterns sent as macro set_macro(packet.instance, (oreoled_macro)packet.pattern); } _pattern_override = packet.pattern; } OreoLED_PX4::oreo_state::oreo_state() { clear_state(); } void OreoLED_PX4::oreo_state::clear_state() { mode = OREOLED_MODE_NONE; pattern = OREOLED_PATTERN_OFF; macro = OREOLED_PARAM_MACRO_RESET; red = 0; green = 0; blue = 0; amplitude_red = 0; amplitude_green = 0; amplitude_blue = 0; period = 0; repeat = 0; phase_offset = 0; } void OreoLED_PX4::oreo_state::send_sync() { clear_state(); mode = OREOLED_MODE_SYNC; } void OreoLED_PX4::oreo_state::set_macro(oreoled_macro new_macro) { clear_state(); mode = OREOLED_MODE_MACRO; macro = new_macro; } void OreoLED_PX4::oreo_state::set_rgb(enum oreoled_pattern new_pattern, uint8_t new_red, uint8_t new_green, uint8_t new_blue) { clear_state(); mode = OREOLED_MODE_RGB; pattern = new_pattern; red = new_red; green = new_green; blue = new_blue; } void OreoLED_PX4::oreo_state::set_rgb(enum oreoled_pattern new_pattern, uint8_t new_red, uint8_t new_green, uint8_t new_blue, uint8_t new_amplitude_red, uint8_t new_amplitude_green, uint8_t new_amplitude_blue, uint16_t new_period, uint16_t new_phase_offset) { clear_state(); mode = OREOLED_MODE_RGB_EXTENDED; pattern = new_pattern; red = new_red; green = new_green; blue = new_blue; amplitude_red = new_amplitude_red; amplitude_green = new_amplitude_green; amplitude_blue = new_amplitude_blue; period = new_period; phase_offset = new_phase_offset; } bool OreoLED_PX4::oreo_state::operator==(const OreoLED_PX4::oreo_state &os) { return ((os.mode==mode) && (os.pattern==pattern) && (os.macro==macro) && (os.red==red) && (os.green==green) && (os.blue==blue) && (os.amplitude_red==amplitude_red) && (os.amplitude_green==amplitude_green) && (os.amplitude_blue==amplitude_blue) && (os.period==period) && (os.repeat==repeat) && (os.phase_offset==phase_offset)); } #endif // CONFIG_HAL_BOARD == HAL_BOARD_PX4