/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* ArduCopter Version 2.0 Beta Authors: Jason Short Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier This firmware is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Special Thanks for Contributors: Hein Hollander :Octo Support Dani Saez :V Ocoto Support Max Levine :Tri Support, Graphics Jose Julio :Stabilization Control laws Randy MacKay :Heli Support Jani Hiriven :Testing feedback Andrew Tridgell :Mavlink Support James Goppert :Mavlink Support Doug Weibel :Libraries Mike Smith :Libraries, Coding support HappyKillmore :Mavlink GCS Michael Oborne :Mavlink GCS Jack Dunkle :Alpha testing Christof Schmid :Alpha testing Guntars :Arming safety suggestion And much more so PLEASE PM me on DIYDRONES to add your contribution to the List */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// // AVR runtime #include #include #include #include // Libraries #include #include #include // ArduPilot Mega RC Library #include // ArduPilot GPS library #include // Arduino I2C lib #include #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include // ArduPilot Mega BMP085 Library #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega IMU Library #include // ArduPilot Mega DCM Library #include // PI library #include // RC Channel Library #include // Range finder library #include // Optical Flow library #include #include // MAVLink GCS definitions #include // Configuration #include "defines.h" #include "config.h" // Local modules #include "Parameters.h" #include "GCS.h" #include "HIL.h" //////////////////////////////////////////////////////////////////////////////// // Serial ports //////////////////////////////////////////////////////////////////////////////// // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. // FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port FastSerialPort3(Serial3); // Telemetry port //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; //////////////////////////////////////////////////////////////////////////////// // prototypes static void update_events(void); //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED // real sensors AP_ADC_ADS7844 adc; APM_BMP085_Class barometer; AP_Compass_HMC5843 compass(Parameters::k_param_compass); #ifdef OPTFLOW_ENABLED AP_OpticalFlow_ADNS3080 optflow; #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 AP_GPS_MTK16 g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(NULL); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_ADC_HIL adc; APM_BMP085_HIL_Class barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver(NULL); #elif HIL_MODE == HIL_MODE_ATTITUDE AP_ADC_HIL adc; AP_DCM_HIL dcm; AP_GPS_HIL g_gps_driver(NULL); AP_Compass_HIL compass; // never used AP_IMU_Shim imu; // never used #ifdef OPTFLOW_ENABLED AP_OpticalFlow_ADNS3080 optflow; #endif static int32_t gps_base_alt; #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE #if HIL_MODE != HIL_MODE_DISABLED #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK GCS_MAVLINK hil(Parameters::k_param_streamrates_port0); #elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE HIL_XPLANE hil; #endif // HIL PROTOCOL #endif // HIL_MODE // We may have a hil object instantiated just for mission planning #if HIL_MODE == HIL_MODE_DISABLED && HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_PORT == 0 GCS_MAVLINK hil(Parameters::k_param_streamrates_port0); #endif #if HIL_MODE != HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_SENSORS // Normal AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration); #else // hil imu AP_IMU_Shim imu; #endif // normal dcm AP_DCM dcm(&imu, g_gps); #endif //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// // #if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK GCS_MAVLINK gcs(Parameters::k_param_streamrates_port3); #else // If we are not using a GCS, we need a stub that does nothing. GCS_Class gcs; #endif //#include //GCS_SIMPLE gcs_simple(&Serial); //////////////////////////////////////////////////////////////////////////////// // SONAR selection //////////////////////////////////////////////////////////////////////////////// // ModeFilter sonar_mode_filter; #if SONAR_TYPE == MAX_SONAR_XL AP_RangeFinder_MaxsonarXL sonar(&adc, &sonar_mode_filter);//(SONAR_PORT, &adc); #else #error Unrecognised SONAR_TYPE setting. #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// static const char *comma = ","; static const char* flight_mode_strings[] = { "STABILIZE", "ACRO", "SIMPLE", "ALT_HOLD", "AUTO", "GUIDED", "LOITER", "RTL", "CIRCLE"}; /* Radio values Channel assignments 1 Ailerons (rudder if no ailerons) 2 Elevator 3 Throttle 4 Rudder (if we have ailerons) 5 Mode - 3 position switch 6 User assignable 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) 8 TBD */ // test //Vector3f accels_rot; //float accel_gain = 20; // temp int y_actual_speed; int y_rate_error; // calc the int x_actual_speed; int x_rate_error; // Radio // ----- static byte control_mode = STABILIZE; static byte old_control_mode = STABILIZE; static byte oldSwitchPosition; // for remembering the control mode switch static int motor_out[8]; // Heli // ---- #if FRAME_CONFIG == HELI_FRAME static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos static int heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly static int heli_servo_out[4]; #endif // Failsafe // -------- static boolean failsafe; // did our throttle dip below the failsafe value? static boolean ch3_failsafe; static boolean motor_armed; static boolean motor_auto_armed; // if true, // PIDs // ---- //int max_stabilize_dampener; // //int max_yaw_dampener; // static boolean rate_yaw_flag; // used to transition yaw control from Rate control to Yaw hold static Vector3f omega; // LED output // ---------- static boolean motor_light; // status of the Motor safety static boolean GPS_light; // status of the GPS light static boolean timer_light; // status of the Motor safety static byte led_mode = NORMAL_LEDS; // GPS variables // ------------- static const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage static float scaleLongUp = 1; // used to reverse longtitude scaling static float scaleLongDown = 1; // used to reverse longtitude scaling static byte ground_start_count = 10; // have we achieved first lock and set Home? static bool did_ground_start = false; // have we ground started after first arming // Location & Navigation // --------------------- static const float radius_of_earth = 6378100; // meters static const float gravity = 9.81; // meters/ sec^2 static long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate static long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target static bool xtrack_enabled = false; static long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target static int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate static float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1? static int last_ground_speed; // used to dampen navigation static int waypoint_speed; static byte wp_control; // used to control - navgation or loiter static byte command_must_index; // current command memory location static byte command_may_index; // current command memory location static byte command_must_ID; // current command ID static byte command_may_ID; // current command ID static byte wp_verify_byte; // used for tracking state of navigating waypoints static float cos_roll_x = 1; static float cos_pitch_x = 1; static float cos_yaw_x = 1; static float sin_pitch_y, sin_yaw_y, sin_roll_y; static bool simple_bearing_is_set = false; static long initial_simple_bearing; // used for Simple mode // Acro #if CH7_OPTION == DO_FLIP static bool do_flip = false; #endif // Airspeed // -------- static int airspeed; // m/s * 100 // Location Errors // --------------- static long bearing_error; // deg * 100 : 0 to 36000 static long altitude_error; // meters * 100 we are off in altitude static long old_altitude; static long distance_error; // distance to the WP static long yaw_error; // how off are we pointed static long long_error, lat_error; // temp for debugging // Battery Sensors // --------------- static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter static float current_amps; static float current_total; static bool low_batt = false; // Barometer Sensor variables // -------------------------- static long abs_pressure; static long ground_pressure; static int ground_temperature; // Altitude Sensor variables // ---------------------- static int sonar_alt; static int baro_alt; static int baro_alt_offset; static byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR static int altitude_rate; // flight mode specific // -------------------- static byte yaw_mode; static byte roll_pitch_mode; static byte throttle_mode; static boolean takeoff_complete; // Flag for using take-off controls static boolean land_complete; static int landing_distance; // meters; static long old_alt; // used for managing altitude rates static int velocity_land; static byte yaw_tracking = MAV_ROI_WPNEXT; // no tracking, point at next wp, or at a target // Loiter management // ----------------- static long saved_target_bearing; // deg * 100 static unsigned long loiter_time; // millis : when we started LOITER mode static unsigned long loiter_time_max; // millis : how long to stay in LOITER mode // these are the values for navigation control functions // ---------------------------------------------------- static long nav_roll; // deg * 100 : target roll angle static long nav_pitch; // deg * 100 : target pitch angle static long nav_yaw; // deg * 100 : target yaw angle static long auto_yaw; // deg * 100 : target yaw angle static long nav_lat; // for error calcs static long nav_lon; // for error calcs static int nav_throttle; // 0-1000 for throttle control static long throttle_integrator; // used to integrate throttle output to predict battery life static bool invalid_throttle; // used to control when we calculate nav_throttle static bool set_throttle_cruise_flag = false; // used to track the throttle crouse value static long command_yaw_start; // what angle were we to begin with static unsigned long command_yaw_start_time; // when did we start turning static unsigned int command_yaw_time; // how long we are turning static long command_yaw_end; // what angle are we trying to be static long command_yaw_delta; // how many degrees will we turn static int command_yaw_speed; // how fast to turn static byte command_yaw_dir; static byte command_yaw_relative; static int auto_level_counter; // Waypoints // --------- static long wp_distance; // meters - distance between plane and next waypoint static long wp_totalDistance; // meters - distance between old and next waypoint static byte next_wp_index; // Current active command index // repeating event control // ----------------------- static byte event_id; // what to do - see defines static unsigned long event_timer; // when the event was asked for in ms static unsigned int event_delay; // how long to delay the next firing of event in millis static int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice static int event_value; // per command value, such as PWM for servos static int event_undo_value; // the value used to undo commands static byte repeat_forever; static byte undo_event; // counter for timing the undo // delay command // -------------- static long condition_value; // used in condition commands (eg delay, change alt, etc.) static long condition_start; static int condition_rate; // land command // ------------ static long land_start; // when we intiated command in millis() static long original_alt; // altitide reference for start of command // 3D Location vectors // ------------------- static struct Location home; // home location static struct Location prev_WP; // last waypoint static struct Location current_loc; // current location static struct Location next_WP; // next waypoint static struct Location target_WP; // where do we want to you towards? static struct Location simple_WP; // static struct Location next_command; // command preloaded static struct Location guided_WP; // guided mode waypoint static long target_altitude; // used for static boolean home_is_set; // Flag for if we have g_gps lock and have set the home location static struct Location optflow_offset; // optical flow base position static boolean new_location; // flag to tell us if location has been updated // IMU variables // ------------- static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm) // Performance monitoring // ---------------------- static long perf_mon_timer; static float imu_health; // Metric based on accel gain deweighting static int G_Dt_max; // Max main loop cycle time in milliseconds static int gps_fix_count; static byte gcs_messages_sent; // GCS // --- static char GCS_buffer[53]; static char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed // System Timers // -------------- static unsigned long fast_loopTimer; // Time in miliseconds of main control loop static unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete static uint8_t delta_ms_fast_loop; // Delta Time in miliseconds static int mainLoop_count; static unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop static byte medium_loopCounter; // Counters for branching from main control loop to slower loops static uint8_t delta_ms_medium_loop; static unsigned long fiftyhz_loopTimer; static uint8_t delta_ms_fiftyhz; static byte slow_loopCounter; static int superslow_loopCounter; static byte alt_timer; // for limiting the execution of flight mode thingys static byte simple_timer; // for limiting the execution of flight mode thingys static unsigned long dTnav; // Delta Time in milliseconds for navigation computations static unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav static unsigned long elapsedTime; // for doing custom events static float load; // % MCU cycles used static byte counter_one_herz; static bool GPS_enabled = false; static byte loop_step; //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// void setup() { memcheck_init(); init_ardupilot(); } void loop() { // We want this to execute fast // ---------------------------- if (millis() - fast_loopTimer >= 5) { //PORTK |= B00010000; delta_ms_fast_loop = millis() - fast_loopTimer; fast_loopTimer = millis(); load = float(fast_loopTimeStamp - fast_loopTimer) / delta_ms_fast_loop; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator mainLoop_count++; //if (delta_ms_fast_loop > 6) // Log_Write_Performance(); // Execute the fast loop // --------------------- fast_loop(); fast_loopTimeStamp = millis(); } if (millis() - fiftyhz_loopTimer > 19) { delta_ms_fiftyhz = millis() - fiftyhz_loopTimer; fiftyhz_loopTimer = millis(); //PORTK |= B01000000; // reads all of the necessary trig functions for cameras, throttle, etc. update_trig(); medium_loop(); // Stuff to run at full 50hz, but after the loops fifty_hz_loop(); counter_one_herz++; if(counter_one_herz == 50){ super_slow_loop(); counter_one_herz = 0; } if (millis() - perf_mon_timer > 20000) { if (mainLoop_count != 0) { gcs.send_message(MSG_PERF_REPORT); if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); resetPerfData(); } } //PORTK &= B10111111; } //PORTK &= B11101111; } // PORTK |= B01000000; // PORTK &= B10111111; // Main loop static void fast_loop() { // IMU DCM Algorithm read_AHRS(); // This is the fast loop - we want it to execute at >= 100Hz // --------------------------------------------------------- if (delta_ms_fast_loop > G_Dt_max) G_Dt_max = delta_ms_fast_loop; // Read radio // ---------- read_radio(); // try to send any deferred messages if the serial port now has // some space available gcs.send_message(MSG_RETRY_DEFERRED); #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0) hil.send_message(MSG_RETRY_DEFERRED); #endif // custom code/exceptions for flight modes // --------------------------------------- update_yaw_mode(); update_roll_pitch_mode(); update_throttle_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); } static void medium_loop() { // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS and Compass //----------------------------------------- case 0: loop_step = 1; medium_loopCounter++; if(GPS_enabled){ update_GPS(); } //readCommands(); #if HIL_MODE != HIL_MODE_ATTITUDE if(g.compass_enabled){ compass.read(); // Read magnetometer compass.calculate(dcm.get_dcm_matrix()); // Calculate heading compass.null_offsets(dcm.get_dcm_matrix()); } #endif // auto_trim, uses an auto_level algorithm auto_trim(); break; // This case performs some navigation computations //------------------------------------------------ case 1: loop_step = 2; medium_loopCounter++; // hack to stop navigation in Simple mode if (control_mode == SIMPLE){ // clear GPS data g_gps->new_data = false; break; } // Auto control modes: if(g_gps->new_data && g_gps->fix){ loop_step = 11; // invalidate GPS data g_gps->new_data = false; // we are not tracking I term on navigation, so this isn't needed dTnav = millis() - nav_loopTimer; nav_loopTimer = millis(); // calculate the copter's desired bearing and WP distance // ------------------------------------------------------ navigate(); // control mode specific updates to nav_bearing // -------------------------------------------- update_navigation(); if (g.log_bitmask & MASK_LOG_NTUN) Log_Write_Nav_Tuning(); } break; // command processing //------------------- case 2: loop_step = 3; medium_loopCounter++; // Read altitude from sensors // -------------------------- update_altitude(); // altitude smoothing // ------------------ //calc_altitude_smoothing_error(); altitude_error = get_altitude_error(); // invalidate the throttle hold value // ---------------------------------- invalid_throttle = true; break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: loop_step = 4; medium_loopCounter++; // perform next command // -------------------- if(control_mode == AUTO){ update_commands(); } #if HIL_MODE != HIL_MODE_ATTITUDE if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_CTUN) Log_Write_Control_Tuning(); #endif #if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK gcs.data_stream_send(5,45); // send all requested output streams with rates requested // between 5 and 45 Hz #else gcs.send_message(MSG_ATTITUDE); // Sends attitude data #endif #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0) hil.data_stream_send(5,45); #endif if (g.log_bitmask & MASK_LOG_MOTORS) Log_Write_Motors(); break; // This case controls the slow loop //--------------------------------- case 4: loop_step = 5; medium_loopCounter = 0; delta_ms_medium_loop = millis() - medium_loopTimer; medium_loopTimer = millis(); if (g.battery_monitoring != 0){ read_battery(); } // Accel trims = hold > 2 seconds // Throttle cruise = switch less than 1 second // -------------------------------------------- read_trim_switch(); // Check for engine arming // ----------------------- arm_motors(); slow_loop(); break; default: // this is just a catch all // ------------------------ medium_loopCounter = 0; break; } } // stuff that happens at 50 hz // --------------------------- static void fifty_hz_loop() { // record throttle output // ------------------------------ throttle_integrator += g.rc_3.servo_out; // Read Sonar // ---------- if(g.sonar_enabled){ sonar_alt = sonar.read(); } #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_MODE != HIL_MODE_DISABLED // HIL for a copter needs very fast update of the servo values hil.send_message(MSG_RADIO_OUT); #endif // use Yaw to find our bearing error calc_bearing_error(); //if (throttle_slew < 0) // throttle_slew++; //else if (throttle_slew > 0) // throttle_slew--; //throttle_slew = min((800 - g.rc_3.control_in), throttle_slew); # if HIL_MODE == HIL_MODE_DISABLED if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_RAW) Log_Write_Raw(); #endif //#if CAMERA_STABILIZER == ENABLED camera_stabilization(); //#endif #if HIL_MODE != HIL_MODE_DISABLED && HIL_PORT != GCS_PORT // kick the HIL to process incoming sensor packets hil.update(); #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK hil.data_stream_send(45,1000); #else hil.send_message(MSG_SERVO_OUT); #endif #elif HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && HIL_MODE == HIL_MODE_DISABLED && HIL_PORT == 0 // Case for hil object on port 0 just for mission planning hil.update(); hil.data_stream_send(45,1000); #endif // kick the GCS to process uplink data gcs.update(); #if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK gcs.data_stream_send(45,1000); #endif #if FRAME_CONFIG == TRI_FRAME // servo Yaw g.rc_4.calc_pwm(); APM_RC.OutputCh(CH_7, g.rc_4.radio_out); #endif } static void slow_loop() { // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter){ case 0: loop_step = 6; slow_loopCounter++; superslow_loopCounter++; if(superslow_loopCounter > 800){ // every 4 minutes #if HIL_MODE != HIL_MODE_ATTITUDE if(g.rc_3.control_in == 0 && g.compass_enabled){ compass.save_offsets(); superslow_loopCounter = 0; } #endif } break; case 1: loop_step = 7; slow_loopCounter++; // Read 3-position switch on radio // ------------------------------- read_control_switch(); // Read main battery voltage if hooked up - does not read the 5v from radio // ------------------------------------------------------------------------ //#if BATTERY_EVENT == 1 // read_battery(); //#endif #if AUTO_RESET_LOITER == 1 if(control_mode == LOITER){ if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 1500){ // reset LOITER to current position //next_WP = current_loc; } } #endif break; case 2: loop_step = 8; slow_loopCounter = 0; update_events(); // blink if we are armed update_lights(); #if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK gcs.data_stream_send(1,5); // send all requested output streams with rates requested // between 1 and 5 Hz #else gcs.send_message(MSG_LOCATION); gcs.send_message(MSG_CPU_LOAD, load*100); #endif #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0) hil.data_stream_send(1,5); #endif #if CHANNEL_6_TUNING != CH6_NONE tuning(); #endif // filter out the baro offset. //if(baro_alt_offset > 0) baro_alt_offset--; //if(baro_alt_offset < 0) baro_alt_offset++; #if MOTOR_LEDS == 1 update_motor_leds(); #endif break; default: slow_loopCounter = 0; break; } } // 1Hz loop static void super_slow_loop() { loop_step = 9; if (g.log_bitmask & MASK_LOG_CUR) Log_Write_Current(); gcs.send_message(MSG_HEARTBEAT); #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK && (HIL_MODE != HIL_MODE_DISABLED || HIL_PORT == 0) hil.send_message(MSG_HEARTBEAT); #endif } static void update_GPS(void) { loop_step = 10; g_gps->update(); update_GPS_light(); //current_loc.lng = 377697000; // Lon * 10 * *7 //current_loc.lat = -1224318000; // Lat * 10 * *7 //current_loc.alt = 100; // alt * 10 * *7 //return; if (g_gps->new_data && g_gps->fix) { // XXX We should be sending GPS data off one of the regular loops so that we send // no-GPS-fix data too #if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK gcs.send_message(MSG_LOCATION); #endif // for performance // --------------- gps_fix_count++; if(ground_start_count > 1){ ground_start_count--; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { SendDebugln("!! bad loc"); ground_start_count = 5; }else{ //Serial.printf("init Home!"); // reset our nav loop timer //nav_loopTimer = millis(); init_home(); // init altitude // commented out because we aren't using absolute altitude // current_loc.alt = home.alt; ground_start_count = 0; } } current_loc.lng = g_gps->longitude; // Lon * 10 * *7 current_loc.lat = g_gps->latitude; // Lat * 10 * *7 if (g.log_bitmask & MASK_LOG_GPS){ Log_Write_GPS(); } } } #ifdef OPTFLOW_ENABLED // blend gps and optical flow location void update_location(void) { //static int count = 0; // get GPS position if(GPS_enabled){ update_GPS(); } if( g.optflow_enabled ) { int32_t temp_lat, temp_lng, diff_lat, diff_lng; // get optical flow position optflow.read(); optflow.get_position(dcm.roll, dcm.pitch, dcm.yaw, current_loc.alt-home.alt); // write to log if (g.log_bitmask & MASK_LOG_OPTFLOW){ Log_Write_Optflow(); } temp_lat = optflow_offset.lat + optflow.lat; temp_lng = optflow_offset.lng + optflow.lng; // if we have good GPS values, don't let optical flow position stray too far if( GPS_enabled && g_gps->fix ) { // ensure current location is within 3m of gps location diff_lat = g_gps->latitude - temp_lat; diff_lng = g_gps->longitude - temp_lng; if( diff_lat > 300 ) { optflow_offset.lat += diff_lat - 300; //Serial.println("lat inc!"); } if( diff_lat < -300 ) { optflow_offset.lat += diff_lat + 300; //Serial.println("lat dec!"); } if( diff_lng > 300 ) { optflow_offset.lng += diff_lng - 300; //Serial.println("lng inc!"); } if( diff_lng < -300 ) { optflow_offset.lng += diff_lng + 300; //Serial.println("lng dec!"); } } // update the current position current_loc.lat = optflow_offset.lat + optflow.lat; current_loc.lng = optflow_offset.lng + optflow.lng; /*count++; if( count >= 20 ) { count = 0; Serial.println(); Serial.print("lat:"); Serial.print(current_loc.lat); Serial.print("\tlng:"); Serial.print(current_loc.lng); Serial.print("\tr:"); Serial.print(nav_roll); Serial.print("\tp:"); Serial.print(nav_pitch); Serial.println(); }*/ // indicate we have a new position for nav functions new_location = true; }else{ // get current position from gps current_loc.lng = g_gps->longitude; // Lon * 10 * *7 current_loc.lat = g_gps->latitude; // Lat * 10 * *7 new_location = g_gps->new_data; } } #endif void update_yaw_mode(void) { switch(yaw_mode){ case YAW_ACRO: g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in); return; break; case YAW_HOLD: // calcualte new nav_yaw offset nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in); //Serial.printf("n:%d %ld, ",g.rc_4.control_in, nav_yaw); break; case YAW_LOOK_AT_HOME: // copter will always point at home if(home_is_set){ nav_yaw = point_at_home_yaw(); } else { nav_yaw = 0; } break; case YAW_AUTO: nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20); nav_yaw = wrap_360(nav_yaw); break; } // Yaw control g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); //Serial.printf("4: %d\n",g.rc_4.servo_out); } void update_roll_pitch_mode(void) { #if CH7_OPTION == DO_FLIP if (do_flip){ roll_flip(); return; } #endif int control_roll = 0, control_pitch = 0; switch(roll_pitch_mode){ case ROLL_PITCH_ACRO: // Roll control g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in); // Pitch control g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in); return; break; case ROLL_PITCH_STABLE: control_roll = g.rc_1.control_in; control_pitch = g.rc_2.control_in; break; case ROLL_PITCH_SIMPLE: simple_timer++; if(simple_timer > 5){ simple_timer = 0; int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100; // pre-calc rotation (stored in real degrees) // roll float cos_x = sin(radians(90 - delta)); // pitch float sin_y = cos(radians(90 - delta)); // Rotate input by the initial bearing // roll nav_roll = g.rc_1.control_in * cos_x + g.rc_2.control_in * sin_y; // pitch nav_pitch = -(g.rc_1.control_in * sin_y - g.rc_2.control_in * cos_x); } control_roll = nav_roll; control_pitch = nav_pitch; break; case ROLL_PITCH_AUTO: // mix in user control with Nav control control_roll = g.rc_1.control_mix(nav_roll); control_pitch = g.rc_2.control_mix(nav_pitch); break; } // Roll control g.rc_1.servo_out = get_stabilize_roll(control_roll); // Pitch control g.rc_2.servo_out = get_stabilize_pitch(control_pitch); } void update_throttle_mode(void) { switch(throttle_mode){ case THROTTLE_MANUAL: g.rc_3.servo_out = get_throttle(g.rc_3.control_in); break; case THROTTLE_HOLD: // allow interactive changing of atitude adjust_altitude(); // fall through case THROTTLE_AUTO: if(invalid_throttle){ // get the AP throttle nav_throttle = get_nav_throttle(altitude_error, 150); //150 = target speed of 1.5m/s // apply throttle control g.rc_3.servo_out = get_throttle(nav_throttle); // clear the new data flag invalid_throttle = false; } break; } } // called after a GPS read static void update_navigation() { // wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS // ------------------------------------------------------------------------ switch(control_mode){ case AUTO: verify_commands(); // note: wp_control is handled by commands_logic // calculates desired Yaw update_auto_yaw(); // calculates the desired Roll and Pitch update_nav_wp(); break; case GUIDED: case RTL: if(wp_distance > 4){ // calculates desired Yaw // XXX this is an experiment #if FRAME_CONFIG == HELI_FRAME update_auto_yaw(); #endif wp_control = WP_MODE; }else{ set_mode(LOITER); xtrack_enabled = false; } // calculates the desired Roll and Pitch update_nav_wp(); break; // switch passthrough to LOITER case LOITER: wp_control = LOITER_MODE; // calculates the desired Roll and Pitch update_nav_wp(); break; case CIRCLE: yaw_tracking = MAV_ROI_WPNEXT; // calculates desired Yaw update_auto_yaw(); // calc the lat and long error to the target calc_location_error(); // use error as the desired rate towards the target // nav_lon, nav_lat is calculated calc_nav_rate(long_error, lat_error, 200, 0); // move at 3m/s, minimum 2m/s // rotate nav_lat and nav_long by nav_bearing so we circle the target { // rotate the desired direction based on the distance to // create a vector field int angle = get_loiter_angle(); // pre-calc rotation (stored in real degrees) // roll float cos_x = cos(radians(90 - angle)); // pitch float sin_y = sin(radians(90 - angle)); // Rotate input by the initial bearing // roll long temp_roll = nav_lon * sin_y - nav_lat * cos_x; // pitch long temp_pitch = nav_lon * cos_x + nav_lat * sin_y; // we used temp values to not change the equations // in mid-rotation nav_lon = temp_roll; nav_lat = temp_pitch; } // rotate pitch and roll to the copter frame of reference calc_nav_pitch_roll(); break; } } static void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- #if HIL_MODE == HIL_MODE_SENSORS // update hil before dcm update hil.update(); #endif dcm.update_DCM(G_Dt); omega = dcm.get_gyro(); } static void update_trig(void){ Vector2f yawvector; Matrix3f temp = dcm.get_dcm_matrix(); yawvector.x = temp.a.x; // sin yawvector.y = temp.b.x; // cos yawvector.normalize(); cos_yaw_x = yawvector.y; // 0 x = north sin_yaw_y = yawvector.x; // 1 y sin_pitch_y = -temp.c.x; cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x)); cos_roll_x = temp.c.z / cos_pitch_x; sin_roll_y = temp.c.y / cos_pitch_x; //flat: // 0 ° = cp: 1.00, sp: 0.00, cr: 1.00, sr: 0.00, cy: 0.00, sy: 1.00, // 90° = cp: 1.00, sp: 0.00, cr: 1.00, sr: 0.00, cy: 1.00, sy: 0.00, // 180 = cp: 1.00, sp: 0.10, cr: 1.00, sr: -0.01, cy: 0.00, sy: -1.00, // 270 = cp: 1.00, sp: 0.10, cr: 1.00, sr: -0.01, cy: -1.00, sy: 0.00, //Vector3f accel_filt = imu.get_accel_filtered(); //accels_rot = dcm.get_dcm_matrix() * imu.get_accel_filtered(); } // updated at 10hz static void update_altitude() { altitude_sensor = BARO; #if HIL_MODE == HIL_MODE_ATTITUDE current_loc.alt = g_gps->altitude - gps_base_alt; return; #else if(g.sonar_enabled){ // filter out offset float scale; // read barometer baro_alt = read_barometer(); if(baro_alt < 1000){ #if SONAR_TILT_CORRECTION == 1 // correct alt for angle of the sonar float temp = cos_pitch_x * cos_roll_x; temp = max(temp, 0.707); sonar_alt = (float)sonar_alt * temp; #endif scale = (sonar_alt - 400) / 200; scale = constrain(scale, 0, 1); current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt; }else{ current_loc.alt = baro_alt + home.alt; } }else{ baro_alt = read_barometer(); // no sonar altitude current_loc.alt = baro_alt + home.alt; } altitude_rate = (current_loc.alt - old_altitude) * 10; // 10 hz timer old_altitude = current_loc.alt; #endif } static void adjust_altitude() { alt_timer++; if(alt_timer >= 2){ alt_timer = 0; if(g.rc_3.control_in <= 200){ next_WP.alt -= 1; // 1 meter per second next_WP.alt = max(next_WP.alt, (current_loc.alt - 400)); // don't go less than 4 meters below current location next_WP.alt = max(next_WP.alt, 100); // don't go less than 1 meter }else if (g.rc_3.control_in > 700){ next_WP.alt += 1; // 1 meter per second next_WP.alt = min(next_WP.alt, (current_loc.alt + 400)); // don't go more than 4 meters below current location } } } static void tuning(){ //Outer Loop : Attitude #if CHANNEL_6_TUNING == CH6_STABILIZE_KP g.pi_stabilize_roll.kP((float)g.rc_6.control_in / 1000.0); g.pi_stabilize_pitch.kP((float)g.rc_6.control_in / 1000.0); #elif CHANNEL_6_TUNING == CH6_STABILIZE_KI g.pi_stabilize_roll.kI((float)g.rc_6.control_in / 1000.0); g.pi_stabilize_pitch.kI((float)g.rc_6.control_in / 1000.0); #elif CHANNEL_6_TUNING == CH6_YAW_KP g.pi_stabilize_yaw.kP((float)g.rc_6.control_in / 1000.0); // range from 0.0 ~ 5.0 #elif CHANNEL_6_TUNING == CH6_YAW_KI g.pi_stabilize_yaw.kI((float)g.rc_6.control_in / 1000.0); //Inner Loop : Rate #elif CHANNEL_6_TUNING == CH6_RATE_KP g.pi_rate_roll.kP((float)g.rc_6.control_in / 1000.0); g.pi_rate_pitch.kP((float)g.rc_6.control_in / 1000.0); #elif CHANNEL_6_TUNING == CH6_RATE_KI g.pi_rate_roll.kI((float)g.rc_6.control_in / 1000.0); g.pi_rate_pitch.kI((float)g.rc_6.control_in / 1000.0); #elif CHANNEL_6_TUNING == CH6_YAW_RATE_KP g.pi_rate_yaw.kP((float)g.rc_6.control_in / 1000.0); #elif CHANNEL_6_TUNING == CH6_YAW_RATE_KI g.pi_rate_yaw.kI((float)g.rc_6.control_in / 1000.0); //Altitude Hold #elif CHANNEL_6_TUNING == CH6_THROTTLE_KP g.pi_throttle.kP((float)g.rc_6.control_in / 1000.0); // 0 to 1 #elif CHANNEL_6_TUNING == CH6_THROTTLE_KD g.pi_throttle.kD((float)g.rc_6.control_in / 1000.0); // 0 to 1 //Extras #elif CHANNEL_6_TUNING == CH6_TOP_BOTTOM_RATIO g.top_bottom_ratio = (float)g.rc_6.control_in / 1000.0; #elif CHANNEL_6_TUNING == CH6_TRAVERSE_SPEED g.waypoint_speed_max = (float)g.rc_6.control_in / 1000.0; #elif CHANNEL_6_TUNING == CH6_PMAX g.pitch_max.set(g.rc_6.control_in * 2); // 0 to 2000 // Simple relay control #elif CHANNEL_6_TUNING == CH6_RELAY if(g.rc_6.control_in <= 600) relay_on(); if(g.rc_6.control_in >= 400) relay_off(); #endif } static void update_nav_wp() { // XXX Guided mode!!! if(wp_control == LOITER_MODE){ // calc a pitch to the target calc_location_error(); // use error as the desired rate towards the target calc_nav_rate(long_error, lat_error, g.waypoint_speed_max, 0); // rotate pitch and roll to the copter frame of reference calc_nav_pitch_roll(); } else { // for long journey's reset the wind resopnse // it assumes we are standing still. g.pi_loiter_lat.reset_I(); g.pi_loiter_lat.reset_I(); // calc the lat and long error to the target calc_location_error(); // use error as the desired rate towards the target calc_nav_rate(long_error, lat_error, g.waypoint_speed_max, 100); // rotate pitch and roll to the copter frame of reference calc_nav_pitch_roll(); } } static void update_auto_yaw() { // this tracks a location so the copter is always pointing towards it. if(yaw_tracking == MAV_ROI_LOCATION){ auto_yaw = get_bearing(¤t_loc, &target_WP); }else if(yaw_tracking == MAV_ROI_WPNEXT){ auto_yaw = target_bearing; } } static long point_at_home_yaw() { return get_bearing(¤t_loc, &home); }