/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* helicopter simulator class */ #include "SIM_Helicopter.h" #include namespace SITL { Helicopter::Helicopter(const char *home_str, const char *frame_str) : Aircraft(home_str, frame_str) { mass = 2.13f; /* scaling from motor power to Newtons. Allows the copter to hover against gravity when the motor is at hover_throttle */ thrust_scale = (mass * GRAVITY_MSS) / hover_throttle; // calculate lateral thrust ratio for tail rotor tail_thrust_scale = sinf(radians(hover_lean)) * thrust_scale / yaw_zero; frame_height = 0.1; if (strstr(frame_str, "-dual")) { frame_type = HELI_FRAME_DUAL; } else if (strstr(frame_str, "-compound")) { frame_type = HELI_FRAME_COMPOUND; } else { frame_type = HELI_FRAME_CONVENTIONAL; } gas_heli = (strstr(frame_str, "-gas") != NULL); } /* update the helicopter simulation by one time step */ void Helicopter::update(const struct sitl_input &input) { // how much time has passed? float delta_time = frame_time_us * 1.0e-6f; float rsc = (input.servos[7]-1000) / 1000.0f; // ignition only for gas helis bool ignition_enabled = gas_heli?(input.servos[5] > 1500):true; float thrust = 0; float roll_rate = 0; float pitch_rate = 0; float yaw_rate = 0; float torque_effect_accel = 0; float lateral_x_thrust = 0; float lateral_y_thrust = 0; float swash1 = (input.servos[0]-1000) / 1000.0f; float swash2 = (input.servos[1]-1000) / 1000.0f; float swash3 = (input.servos[2]-1000) / 1000.0f; if (!ignition_enabled) { rsc = 0; } float rsc_scale = rsc/rsc_setpoint; switch (frame_type) { case HELI_FRAME_CONVENTIONAL: { // simulate a traditional helicopter float tail_rotor = (input.servos[3]-1000) / 1000.0f; thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f; torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel; roll_rate = swash1 - swash2; pitch_rate = (swash1+swash2) / 2.0f - swash3; yaw_rate = tail_rotor - 0.5f; lateral_y_thrust = yaw_rate * rsc_scale * tail_thrust_scale; break; } case HELI_FRAME_DUAL: { // simulate a tandem helicopter float swash4 = (input.servos[3]-1000) / 1000.0f; float swash5 = (input.servos[4]-1000) / 1000.0f; float swash6 = (input.servos[5]-1000) / 1000.0f; thrust = (rsc / rsc_setpoint) * (swash1+swash2+swash3+swash4+swash5+swash6) / 6.0f; torque_effect_accel = (rsc_scale + rsc / rsc_setpoint) * rotor_rot_accel * ((swash1+swash2+swash3) - (swash4+swash5+swash6)); roll_rate = (swash1-swash2) + (swash4-swash5); pitch_rate = (swash1+swash2+swash3) - (swash4+swash5+swash6); yaw_rate = (swash1-swash2) + (swash5-swash4); break; } case HELI_FRAME_COMPOUND: { // simulate a compound helicopter float right_rotor = (input.servos[3]-1000) / 1000.0f; float left_rotor = (input.servos[4]-1000) / 1000.0f; thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f; torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel; roll_rate = swash1 - swash2; pitch_rate = (swash1+swash2) / 2.0f - swash3; yaw_rate = right_rotor - left_rotor; lateral_x_thrust = (left_rotor+right_rotor-1) * rsc_scale * tail_thrust_scale; break; } } roll_rate *= rsc_scale; pitch_rate *= rsc_scale; yaw_rate *= rsc_scale; // rotational acceleration, in rad/s/s, in body frame Vector3f rot_accel; rot_accel.x = roll_rate * roll_rate_max; rot_accel.y = pitch_rate * pitch_rate_max; rot_accel.z = yaw_rate * yaw_rate_max; // rotational air resistance rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; // torque effect on tail rot_accel.z += torque_effect_accel; // update rotational rates in body frame gyro += rot_accel * delta_time; // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // air resistance Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity); // scale thrust to newtons thrust *= thrust_scale; accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass); Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0, 0, GRAVITY_MSS); accel_earth += air_resistance; // if we're on the ground, then our vertical acceleration is limited // to zero. This effectively adds the force of the ground on the aircraft if (on_ground(position) && accel_earth.z > 0) { accel_earth.z = 0; } // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); // add some noise add_noise(thrust / thrust_scale); // new velocity vector velocity_ef += accel_earth * delta_time; // new position vector Vector3f old_position = position; position += velocity_ef * delta_time; // assume zero wind for now airspeed = velocity_ef.length(); // constrain height to the ground if (on_ground(position)) { if (!on_ground(old_position)) { printf("Hit ground at %f m/s\n", velocity_ef.z); velocity_ef.zero(); // zero roll/pitch, but keep yaw float r, p, y; dcm.to_euler(&r, &p, &y); dcm.from_euler(0, 0, y); position.z = -(ground_level + frame_height - home.alt*0.01f); } } // update lat/lon/altitude update_position(); } } // namespace SITL