% IMPORTANT - This script requires the Matlab symbolic toolbox % Author: Paul Riseborough % Last Modified: 16 Feb 2015 % Derivation of a navigation EKF using a local NED earth Tangent Frame for % the initial alignment and gyro bias estimation from a moving platform % Based on use of a rotation vector for attitude estimation as described % here: % % Mark E. Pittelkau. "Rotation Vector in Attitude Estimation", % Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6 (2003), % pp. 855-860. % % The benefits for use of rotation error vector over use of a four parameter % quaternion representation of the estiamted orientation are: % a) Reduced computational load % b) Improved stability % c) The ability to recover faster from large orientation errors. This % makes this filter particularly suitable where the initial alignment is % uncertain % State vector: % error rotation vector % Velocity - North, East, Down (m/s) % Delta Angle bias - X,Y,Z (rad) % Observations: % NED velocity - N,E,D (m/s) % body fixed magnetic field vector - X,Y,Z % Time varying parameters: % XYZ delta angle measurements in body axes - rad % XYZ delta velocity measurements in body axes - m/sec % magnetic declination clear all; %% define symbolic variables and constants syms dax day daz real % IMU delta angle measurements in body axes - rad syms dvx dvy dvz real % IMU delta velocity measurements in body axes - m/sec syms q0 q1 q2 q3 real % quaternions defining attitude of body axes relative to local NED syms vn ve vd real % NED velocity - m/sec syms dax_b day_b daz_b real % delta angle bias - rad syms dvx_b dvy_b dvz_b real % delta velocity bias - m/sec syms dt real % IMU time step - sec syms gravity real % gravity - m/sec^2 syms daxNoise dayNoise dazNoise dvxNoise dvyNoise dvzNoise real; % IMU delta angle and delta velocity measurement noise syms vwn vwe real; % NE wind velocity - m/sec syms magX magY magZ real; % XYZ body fixed magnetic field measurements - milligauss syms magN magE magD real; % NED earth fixed magnetic field components - milligauss syms R_VN R_VE R_VD real % variances for NED velocity measurements - (m/sec)^2 syms R_MAG real % variance for magnetic flux measurements - milligauss^2 syms rotErr1 rotErr2 rotErr3 real; % error rotation vector %% define the process equations % define the measured Delta angle and delta velocity vectors dAngMeas = [dax; day; daz]; dVelMeas = [dvx; dvy; dvz]; % define the delta angle bias errors dAngBias = [dax_b; day_b; daz_b]; % define the quaternion rotation vector for the state estimate estQuat = [q0;q1;q2;q3]; % define the attitude error rotation vector, where error = truth - estimate errRotVec = [rotErr1;rotErr2;rotErr3]; % define the attitude error quaternion using a first order linearisation errQuat = [1;0.5*errRotVec]; % Define the truth quaternion as the estimate + error truthQuat = QuatMult(estQuat, errQuat); % derive the truth body to nav direction cosine matrix Tbn = Quat2Tbn(truthQuat); % define the truth delta angle % ignore coning acompensation as these effects are negligible in terms of % covariance growth for our application and grade of sensor dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise]; % Define the truth delta velocity dVelTruth = dVelMeas - [dvxNoise;dvyNoise;dvzNoise]; % define the attitude update equations % use a first order expansion of rotation to calculate the quaternion increment % acceptable for propagation of covariances deltaQuat = [1; 0.5*dAngTruth(1); 0.5*dAngTruth(2); 0.5*dAngTruth(3); ]; truthQuatNew = QuatMult(truthQuat,deltaQuat); % calculate the updated attitude error quaternion with respect to the previous estimate errQuatNew = QuatDivide(truthQuatNew,estQuat); % change to a rotaton vector - this is the error rotation vector updated state errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)]; % define the velocity update equations % ignore coriolis terms for linearisation purposes vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tbn*dVelTruth; % define the IMU bias error update equations dabNew = [dax_b; day_b; daz_b]; % Define the state vector & number of states stateVector = [errRotVec;vn;ve;vd;dAngBias]; nStates=numel(stateVector); %% derive the covariance prediction equation % This reduces the number of floating point operations by a factor of 6 or % more compared to using the standard matrix operations in code % Define the control (disturbance) vector. Error growth in the inertial % solution is assumed to be driven by 'noise' in the delta angles and % velocities, after bias effects have been removed. This is OK becasue we % have sensor bias accounted for in the state equations. distVector = [daxNoise;dayNoise;dazNoise;dvxNoise;dvyNoise;dvzNoise]; % derive the control(disturbance) influence matrix G = jacobian([errRotNew;vNew;dabNew], distVector); G = subs(G, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0}); % derive the state error matrix distMatrix = diag(distVector); Q = G*distMatrix*transpose(G); f = matlabFunction(Q,'file','calcQ.m'); % derive the state transition matrix vNew = subs(vNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0}); errRotNew = subs(errRotNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0}); F = jacobian([errRotNew;vNew;dabNew], stateVector); F = subs(F, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0}); f = matlabFunction(F,'file','calcF.m'); % define a symbolic covariance matrix using strings to represent % '_l_' to represent '( ' % '_c_' to represent , % '_r_' to represent ')' % these can be substituted later to create executable code % for rowIndex = 1:nStates % for colIndex = 1:nStates % eval(['syms OP_l_',num2str(rowIndex),'_c_',num2str(colIndex), '_r_ real']); % eval(['P(',num2str(rowIndex),',',num2str(colIndex), ') = OP_l_',num2str(rowIndex),'_c_',num2str(colIndex),'_r_;']); % end % end % Derive the predicted covariance matrix using the standard equation % nextP = F*P*transpose(F) + Q; % f = matlabFunction(nextP,'file','calcP.m'); %% derive equations for fusion of magnetic deviation measurement % rotate body measured field into earth axes magMeasNED = Tbn*[magX;magY;magZ]; % the predicted measurement is the angle wrt true north of the horizontal % component of the measured field angMeas = tan(magMeasNED(2)/magMeasNED(1)); H_MAG = jacobian(angMeas,stateVector); % measurement Jacobian H_MAG = subs(H_MAG, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0}); f = matlabFunction(H_MAG,'file','calcH_MAG.m');