/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // counter to verify landings static uint32_t land_detector = ((float)LAND_DETECTOR_TRIGGER_SEC)*MAIN_LOOP_RATE; // we assume we are landed // land_complete_maybe - return true if we may have landed (used to reset loiter targets during landing) static bool land_complete_maybe() { return (ap.land_complete || ap.land_complete_maybe); } // update_land_detector - checks if we have landed and updates the ap.land_complete flag // called at MAIN_LOOP_RATE static void update_land_detector() { // land detector can not use the following sensors because they are unreliable during landing // barometer altitude : ground effect can cause errors larger than 4m // EKF vertical velocity or altitude : poor barometer and large acceleration from ground impact // earth frame angle or angle error : landing on an uneven surface will force the airframe to match the ground angle // gyro output : on uneven surface the airframe may rock back an forth after landing // range finder : tend to be problematic at very short distances // input throttle : in slow land the input throttle may be only slightly less than hover #if FRAME_CONFIG == HELI_FRAME // check that collective pitch is on lower limit (should be constrained by LAND_COL_MIN) bool motor_at_lower_limit = motors.limit.throttle_lower; #else // check that the average throttle output is near minimum (less than 12.5% hover throttle) bool motor_at_lower_limit = motors.limit.throttle_lower && motors.is_throttle_mix_min(); #endif Vector3f accel_ef = ahrs.get_accel_ef_blended(); accel_ef.z += GRAVITY_MSS; // lowpass filter on accel accel_ef = land_accel_ef_filter.apply(accel_ef, MAIN_LOOP_SECONDS); // check that the airframe is not accelerating (not falling or breaking after fast forward flight) bool accel_stationary = (accel_ef.length() < 1.0f); if ( motor_at_lower_limit && accel_stationary) { if (!ap.land_complete) { // increase counter until we hit the trigger then set land complete flag if( land_detector < ((float)LAND_DETECTOR_TRIGGER_SEC)*MAIN_LOOP_RATE) { land_detector++; }else{ set_land_complete(true); land_detector = ((float)LAND_DETECTOR_TRIGGER_SEC)*MAIN_LOOP_RATE; } } } else { // we've sensed movement up or down so reset land_detector land_detector = 0; // if throttle output is high then clear landing flag if (motors.get_throttle() > get_non_takeoff_throttle()) { set_land_complete(false); } } // set land maybe flag set_land_complete_maybe(land_detector >= LAND_DETECTOR_MAYBE_TRIGGER_SEC*MAIN_LOOP_RATE); } // update_throttle_thr_mix - sets motors throttle_low_comp value depending upon vehicle state // low values favour pilot/autopilot throttle over attitude control, high values favour attitude control over throttle // has no effect when throttle is above hover throttle static void update_throttle_thr_mix() { if (mode_has_manual_throttle(control_mode)) { // manual throttle if(!motors.armed() || channel_throttle->control_in <= 0) { motors.set_throttle_mix_min(); } else { motors.set_throttle_mix_mid(); } } else { // autopilot controlled throttle // check for aggressive flight requests - requested roll or pitch angle below 15 degrees const Vector3f angle_target = attitude_control.angle_ef_targets(); bool large_angle_request = (pythagorous2(angle_target.x, angle_target.y) > 1500.0f); // check for large external disturbance - angle error over 30 degrees const Vector3f angle_error = attitude_control.angle_bf_error(); bool large_angle_error = (pythagorous2(angle_error.x, angle_error.y) > 3000.0f); // check for large acceleration - falling or high turbulence Vector3f accel_ef = ahrs.get_accel_ef_blended(); accel_ef.z += GRAVITY_MSS; bool accel_moving = (accel_ef.length() > 3.0f); // check for requested decent bool descent_not_demanded = pos_control.get_desired_velocity().z >= 0.0f; if ( large_angle_request || large_angle_error || accel_moving || descent_not_demanded) { motors.set_throttle_mix_max(); } else { motors.set_throttle_mix_min(); } } }