// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // // Simple test for the AP_Quaternion library // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // uncomment this for a APM2 board //#define APM2_HARDWARE FastSerialPort(Serial, 0); Arduino_Mega_ISR_Registry isr_registry; AP_TimerProcess scheduler; #ifdef DESKTOP_BUILD AP_Compass_HIL compass; #else AP_Compass_HMC5843 compass; #endif #ifdef APM2_HARDWARE AP_InertialSensor_MPU6000 ins( 53 ); # else AP_ADC_ADS7844 adc; AP_InertialSensor_Oilpan ins( &adc ); #endif // CONFIG_IMU_TYPE static GPS *g_gps; AP_IMU_INS imu(&ins); AP_Quaternion quaternion(&imu, g_gps); AP_Baro_BMP085_HIL barometer; #ifdef APM2_HARDWARE # define A_LED_PIN 27 # define C_LED_PIN 25 # define LED_ON LOW # define LED_OFF HIGH # define MAG_ORIENTATION AP_COMPASS_APM2_SHIELD #else # define A_LED_PIN 37 # define C_LED_PIN 35 # define LED_ON HIGH # define LED_OFF LOW # define MAG_ORIENTATION AP_COMPASS_COMPONENTS_DOWN_PINS_FORWARD #endif static void flash_leds(bool on) { digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON); digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF); } void setup(void) { Serial.begin(115200); Serial.println("Starting up..."); #ifndef DESKTOP_BUILD I2c.begin(); I2c.timeOut(5); I2c.setSpeed(true); #endif SPI.begin(); SPI.setClockDivider(SPI_CLOCK_DIV16); #ifdef APM2_HARDWARE // we need to stop the barometer from holding the SPI bus pinMode(40, OUTPUT); digitalWrite(40, HIGH); #endif isr_registry.init(); scheduler.init(&isr_registry); imu.init(IMU::COLD_START, delay, flash_leds, &scheduler); imu.init_accel(delay, flash_leds); compass.set_orientation(MAG_ORIENTATION); if (compass.init()) { Serial.printf("Enabling compass\n"); compass.null_offsets_enable(); quaternion.set_compass(&compass); } } void loop(void) { static uint16_t counter; static uint32_t last_t, last_print, last_compass; uint32_t now = micros(); float deltat; static uint32_t compass_reads; static uint32_t compass_time; if (last_t == 0) { last_t = now; return; } deltat = (now - last_t) * 1.0e-6; last_t = now; if (now - last_compass > 100*1000UL) { // read compass at 10Hz compass.read(); last_compass = now; } quaternion.update(deltat); counter++; if (now - last_print >= 0.5e6) { Vector3f accel = imu.get_accel(); Vector3f gyro = imu.get_gyro(); Serial.printf_P(PSTR("r:%4.1f p:%4.1f y:%4.1f g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f) rate=%.1f\n"), ToDeg(quaternion.roll), ToDeg(quaternion.pitch), ToDeg(quaternion.yaw), gyro.x, gyro.y, gyro.z, accel.x, accel.y, accel.z, (1.0e6*counter)/(now-last_print)); last_print = now; counter = 0; compass_reads=0; compass_time = 0; } }