/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // NMEA parser, adapted by Michael Smith from TinyGPS v9: // // TinyGPS - a small GPS library for Arduino providing basic NMEA parsing // Copyright (C) 2008-9 Mikal Hart // All rights reserved. // /// @file AP_GPS_NMEA.cpp /// @brief NMEA protocol parser /// /// This is a lightweight NMEA parser, derived originally from the /// TinyGPS parser by Mikal Hart. /// #include #include #include #include #include #include #include "AP_GPS_NMEA.h" #if AP_GPS_NMEA_ENABLED extern const AP_HAL::HAL& hal; // Convenience macros ////////////////////////////////////////////////////////// // #define DIGIT_TO_VAL(_x) (_x - '0') #define hexdigit(x) ((x)>9?'A'+((x)-10):'0'+(x)) bool AP_GPS_NMEA::read(void) { int16_t numc; bool parsed = false; numc = port->available(); while (numc--) { char c = port->read(); if (_decode(c)) { parsed = true; } #if AP_GPS_DEBUG_LOGGING_ENABLED log_data((const uint8_t *)&c, 1); #endif } return parsed; } bool AP_GPS_NMEA::_decode(char c) { bool valid_sentence = false; _sentence_length++; switch (c) { case ',': // term terminators _parity ^= c; FALLTHROUGH; case '\r': case '\n': case '*': if (_sentence_done) { return false; } if (_term_offset < sizeof(_term)) { _term[_term_offset] = 0; valid_sentence = _term_complete(); } ++_term_number; _term_offset = 0; _is_checksum_term = c == '*'; return valid_sentence; case '$': // sentence begin _term_number = _term_offset = 0; _parity = 0; _sentence_type = _GPS_SENTENCE_OTHER; _is_checksum_term = false; _gps_data_good = false; _sentence_length = 1; _sentence_done = false; return valid_sentence; } // ordinary characters if (_term_offset < sizeof(_term) - 1) _term[_term_offset++] = c; if (!_is_checksum_term) _parity ^= c; return valid_sentence; } int32_t AP_GPS_NMEA::_parse_decimal_100(const char *p) { char *endptr = nullptr; long ret = 100 * strtol(p, &endptr, 10); int sign = ret < 0 ? -1 : 1; if (ret >= (long)INT32_MAX) { return INT32_MAX; } if (ret <= (long)INT32_MIN) { return INT32_MIN; } if (endptr == nullptr || *endptr != '.') { return ret; } if (isdigit(endptr[1])) { ret += sign * 10 * DIGIT_TO_VAL(endptr[1]); if (isdigit(endptr[2])) { ret += sign * DIGIT_TO_VAL(endptr[2]); if (isdigit(endptr[3])) { ret += sign * (DIGIT_TO_VAL(endptr[3]) >= 5); } } } return ret; } /* parse a NMEA latitude/longitude degree value. The result is in degrees*1e7 */ uint32_t AP_GPS_NMEA::_parse_degrees() { char *p, *q; uint8_t deg = 0, min = 0; float frac_min = 0; int32_t ret = 0; // scan for decimal point or end of field for (p = _term; *p && isdigit(*p); p++) ; q = _term; // convert degrees while ((p - q) > 2 && *q) { if (deg) deg *= 10; deg += DIGIT_TO_VAL(*q++); } // convert minutes while (p > q && *q) { if (min) min *= 10; min += DIGIT_TO_VAL(*q++); } // convert fractional minutes if (*p == '.') { q = p + 1; float frac_scale = 0.1f; while (*q && isdigit(*q)) { frac_min += DIGIT_TO_VAL(*q) * frac_scale; q++; frac_scale *= 0.1f; } } ret = (deg * (int32_t)10000000UL); ret += (min * (int32_t)10000000UL / 60); ret += (int32_t) (frac_min * (1.0e7f / 60.0f)); return ret; } /* see if we have a new set of NMEA messages */ bool AP_GPS_NMEA::_have_new_message() { if (_last_RMC_ms == 0 || _last_GGA_ms == 0) { return false; } uint32_t now = AP_HAL::millis(); if (now - _last_RMC_ms > 150 || now - _last_GGA_ms > 150) { return false; } if (_last_VTG_ms != 0 && now - _last_VTG_ms > 150) { return false; } /* if we have seen a message with 3D velocity data messages then wait for them again. This is important as the have_vertical_velocity field will be overwritten by fill_3d_velocity() */ if (_last_vvelocity_ms != 0 && now - _last_vvelocity_ms > 150 && now - _last_vvelocity_ms < 1000) { // waiting on a message with velocity return false; } if (_last_vaccuracy_ms != 0 && now - _last_vaccuracy_ms > 150 && now - _last_vaccuracy_ms < 1000) { // waiting on a message with velocity accuracy return false; } // prevent these messages being used again if (_last_VTG_ms != 0) { _last_VTG_ms = 1; } if (now - _last_yaw_ms > 300) { // we have lost GPS yaw state.have_gps_yaw = false; } if (now - _last_KSXT_pos_ms > 500) { // we have lost KSXT _last_KSXT_pos_ms = 0; } // special case for fixing low output rate of ALLYSTAR GPS modules const int32_t dt_ms = now - _last_fix_ms; if (labs(dt_ms - gps._rate_ms[state.instance]) > 50 && get_type() == AP_GPS::GPS_TYPE_ALLYSTAR) { nmea_printf(port, "$PHD,06,42,UUUUTTTT,BB,0,%u,55,0,%u,0,0,0", unsigned(1000U/gps._rate_ms[state.instance]), unsigned(gps._rate_ms[state.instance])); } _last_fix_ms = now; _last_GGA_ms = 1; _last_RMC_ms = 1; return true; } // Processes a just-completed term // Returns true if new sentence has just passed checksum test and is validated bool AP_GPS_NMEA::_term_complete() { // handle the last term in a message if (_is_checksum_term) { _sentence_done = true; uint8_t nibble_high = 0; uint8_t nibble_low = 0; if (!hex_to_uint8(_term[0], nibble_high) || !hex_to_uint8(_term[1], nibble_low)) { return false; } const uint8_t checksum = (nibble_high << 4u) | nibble_low; if (checksum == _parity) { if (_gps_data_good) { uint32_t now = AP_HAL::millis(); switch (_sentence_type) { case _GPS_SENTENCE_RMC: _last_RMC_ms = now; //time = _new_time; //date = _new_date; if (_last_KSXT_pos_ms == 0) { state.location.lat = _new_latitude; state.location.lng = _new_longitude; } if (_last_3D_velocity_ms == 0 || now - _last_3D_velocity_ms > 1000) { state.ground_speed = _new_speed*0.01f; state.ground_course = wrap_360(_new_course*0.01f); } make_gps_time(_new_date, _new_time * 10); set_uart_timestamp(_sentence_length); state.last_gps_time_ms = now; if (_last_vvelocity_ms == 0 || now - _last_vvelocity_ms > 1000) { fill_3d_velocity(); } break; case _GPS_SENTENCE_GGA: _last_GGA_ms = now; if (_last_KSXT_pos_ms == 0) { state.location.alt = _new_altitude; state.location.lat = _new_latitude; state.location.lng = _new_longitude; } state.num_sats = _new_satellite_count; state.hdop = _new_hdop; switch(_new_quality_indicator) { case 0: // Fix not available or invalid state.status = AP_GPS::NO_FIX; break; case 1: // GPS SPS Mode, fix valid state.status = AP_GPS::GPS_OK_FIX_3D; break; case 2: // Differential GPS, SPS Mode, fix valid state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 3: // GPS PPS Mode, fix valid state.status = AP_GPS::GPS_OK_FIX_3D; break; case 4: // Real Time Kinematic. System used in RTK mode with fixed integers state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; break; case 5: // Float RTK. Satellite system used in RTK mode, floating integers state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; break; case 6: // Estimated (dead reckoning) Mode state.status = AP_GPS::NO_FIX; break; default://to maintain compatibility with MAV_GPS_INPUT and others state.status = AP_GPS::GPS_OK_FIX_3D; break; } break; case _GPS_SENTENCE_VTG: _last_VTG_ms = now; if (_last_3D_velocity_ms == 0 || now - _last_3D_velocity_ms > 1000) { state.ground_speed = _new_speed*0.01f; state.ground_course = wrap_360(_new_course*0.01f); if (_last_vvelocity_ms == 0 || now - _last_vvelocity_ms > 1000) { fill_3d_velocity(); } } // VTG has no fix indicator, can't change fix status break; case _GPS_SENTENCE_HDT: case _GPS_SENTENCE_THS: _last_yaw_ms = now; state.gps_yaw = wrap_360(_new_gps_yaw*0.01f); state.have_gps_yaw = true; state.gps_yaw_time_ms = AP_HAL::millis(); // remember that we are setup to provide yaw. With // a NMEA GPS we can only tell if the GPS is // configured to provide yaw when it first sends a // HDT sentence. state.gps_yaw_configured = true; break; case _GPS_SENTENCE_PHD: if (_phd.msg_id == 12) { state.velocity.x = _phd.fields[0] * 0.01; state.velocity.y = _phd.fields[1] * 0.01; state.velocity.z = _phd.fields[2] * 0.01; state.have_vertical_velocity = true; _last_vvelocity_ms = now; // we prefer a true 3D velocity when available state.ground_course = wrap_360(degrees(atan2f(state.velocity.y, state.velocity.x))); state.ground_speed = state.velocity.xy().length(); _last_3D_velocity_ms = now; } else if (_phd.msg_id == 26) { state.horizontal_accuracy = MAX(_phd.fields[0],_phd.fields[1]) * 0.001; state.have_horizontal_accuracy = true; state.vertical_accuracy = _phd.fields[2] * 0.001; state.have_vertical_accuracy = true; state.speed_accuracy = MAX(_phd.fields[3],_phd.fields[4]) * 0.001; state.have_speed_accuracy = true; _last_vaccuracy_ms = now; } break; case _GPS_SENTENCE_KSXT: state.location.lat = _ksxt.fields[2]*1.0e7; state.location.lng = _ksxt.fields[1]*1.0e7; state.location.alt = _ksxt.fields[3]*1.0e2; _last_KSXT_pos_ms = now; if (_ksxt.fields[9] >= 1) { // we have 3D fix constexpr float kmh_to_mps = 1.0 / 3.6; state.velocity.y = _ksxt.fields[16] * kmh_to_mps; state.velocity.x = _ksxt.fields[17] * kmh_to_mps; state.velocity.z = _ksxt.fields[18] * -kmh_to_mps; state.have_vertical_velocity = true; _last_vvelocity_ms = now; // we prefer a true 3D velocity when available state.ground_course = wrap_360(degrees(atan2f(state.velocity.y, state.velocity.x))); state.ground_speed = state.velocity.xy().length(); _last_3D_velocity_ms = now; } if (is_equal(3.0f, _ksxt.fields[10])) { // have good yaw (from RTK fixed moving baseline solution) _last_yaw_ms = now; state.gps_yaw = _ksxt.fields[4]; state.have_gps_yaw = true; state.gps_yaw_time_ms = AP_HAL::millis(); state.gps_yaw_configured = true; } break; } } else { switch (_sentence_type) { case _GPS_SENTENCE_RMC: case _GPS_SENTENCE_GGA: // Only these sentences give us information about // fix status. state.status = AP_GPS::NO_FIX; break; case _GPS_SENTENCE_THS: state.have_gps_yaw = false; break; } } // see if we got a good message return _have_new_message(); } // we got a bad message, ignore it return false; } // the first term determines the sentence type if (_term_number == 0) { /* special case for $PHD message */ if (strcmp(_term, "PHD") == 0) { _sentence_type = _GPS_SENTENCE_PHD; return false; } if (strcmp(_term, "KSXT") == 0) { _sentence_type = _GPS_SENTENCE_KSXT; _gps_data_good = true; return false; } /* The first two letters of the NMEA term are the talker ID. The most common is 'GP' but there are a bunch of others that are valid. We accept any two characters here. */ if (_term[0] < 'A' || _term[0] > 'Z' || _term[1] < 'A' || _term[1] > 'Z') { _sentence_type = _GPS_SENTENCE_OTHER; return false; } const char *term_type = &_term[2]; if (strcmp(term_type, "RMC") == 0) { _sentence_type = _GPS_SENTENCE_RMC; } else if (strcmp(term_type, "GGA") == 0) { _sentence_type = _GPS_SENTENCE_GGA; } else if (strcmp(term_type, "HDT") == 0) { _sentence_type = _GPS_SENTENCE_HDT; // HDT doesn't have a data qualifier _gps_data_good = true; } else if (strcmp(term_type, "THS") == 0) { _sentence_type = _GPS_SENTENCE_THS; } else if (strcmp(term_type, "VTG") == 0) { _sentence_type = _GPS_SENTENCE_VTG; // VTG may not contain a data qualifier, presume the solution is good // unless it tells us otherwise. _gps_data_good = true; } else { _sentence_type = _GPS_SENTENCE_OTHER; } return false; } // 32 = RMC, 64 = GGA, 96 = VTG, 128 = HDT, 160 = THS if (_sentence_type != _GPS_SENTENCE_OTHER && _term[0]) { switch (_sentence_type + _term_number) { // operational status // case _GPS_SENTENCE_RMC + 2: // validity (RMC) _gps_data_good = _term[0] == 'A'; break; case _GPS_SENTENCE_GGA + 6: // Fix data (GGA) _gps_data_good = _term[0] > '0'; _new_quality_indicator = _term[0] - '0'; break; case _GPS_SENTENCE_THS + 2: // validity (THS) _gps_data_good = _term[0] == 'A'; break; case _GPS_SENTENCE_VTG + 9: // validity (VTG) (we may not see this field) _gps_data_good = _term[0] != 'N'; break; case _GPS_SENTENCE_GGA + 7: // satellite count (GGA) _new_satellite_count = atol(_term); break; case _GPS_SENTENCE_GGA + 8: // HDOP (GGA) _new_hdop = (uint16_t)_parse_decimal_100(_term); break; // time and date // case _GPS_SENTENCE_RMC + 1: // Time (RMC) case _GPS_SENTENCE_GGA + 1: // Time (GGA) _new_time = _parse_decimal_100(_term); break; case _GPS_SENTENCE_RMC + 9: // Date (GPRMC) _new_date = atol(_term); break; // location // case _GPS_SENTENCE_RMC + 3: // Latitude case _GPS_SENTENCE_GGA + 2: _new_latitude = _parse_degrees(); break; case _GPS_SENTENCE_RMC + 4: // N/S case _GPS_SENTENCE_GGA + 3: if (_term[0] == 'S') _new_latitude = -_new_latitude; break; case _GPS_SENTENCE_RMC + 5: // Longitude case _GPS_SENTENCE_GGA + 4: _new_longitude = _parse_degrees(); break; case _GPS_SENTENCE_RMC + 6: // E/W case _GPS_SENTENCE_GGA + 5: if (_term[0] == 'W') _new_longitude = -_new_longitude; break; case _GPS_SENTENCE_GGA + 9: // Altitude (GPGGA) _new_altitude = _parse_decimal_100(_term); break; // course and speed // case _GPS_SENTENCE_RMC + 7: // Speed (GPRMC) case _GPS_SENTENCE_VTG + 5: // Speed (VTG) _new_speed = (_parse_decimal_100(_term) * 514) / 1000; // knots-> m/sec, approximiates * 0.514 break; case _GPS_SENTENCE_HDT + 1: // Course (HDT) _new_gps_yaw = _parse_decimal_100(_term); break; case _GPS_SENTENCE_THS + 1: // Course (THS) _new_gps_yaw = _parse_decimal_100(_term); break; case _GPS_SENTENCE_RMC + 8: // Course (GPRMC) case _GPS_SENTENCE_VTG + 1: // Course (VTG) _new_course = _parse_decimal_100(_term); break; case _GPS_SENTENCE_PHD + 1: // PHD class _phd.msg_class = atol(_term); break; case _GPS_SENTENCE_PHD + 2: // PHD message _phd.msg_id = atol(_term); if (_phd.msg_class == 1 && (_phd.msg_id == 12 || _phd.msg_id == 26)) { // we only support $PHD messages 1/12 and 1/26 _gps_data_good = true; } break; case _GPS_SENTENCE_PHD + 5: // PHD message, itow _phd.itow = strtoul(_term, nullptr, 10); break; case _GPS_SENTENCE_PHD + 6 ... _GPS_SENTENCE_PHD + 11: // PHD message, fields _phd.fields[_term_number-6] = atol(_term); break; case _GPS_SENTENCE_KSXT + 1 ... _GPS_SENTENCE_KSXT + 22: // PHD message, fields _ksxt.fields[_term_number-1] = atof(_term); break; } } return false; } /* detect a NMEA GPS. Adds one byte, and returns true if the stream matches a NMEA string */ bool AP_GPS_NMEA::_detect(struct NMEA_detect_state &state, uint8_t data) { switch (state.step) { case 0: state.ck = 0; if ('$' == data) { state.step++; } break; case 1: if ('*' == data) { state.step++; } else { state.ck ^= data; } break; case 2: if (hexdigit(state.ck>>4) == data) { state.step++; } else { state.step = 0; } break; case 3: if (hexdigit(state.ck&0xF) == data) { state.step = 0; return true; } state.step = 0; break; } return false; } #endif