/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega * Code by Jordi Mu�oz and Jose Julio. DIYDrones.com * * Modified by John Ihlein 6 / 19 / 2010 to: * 1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably * only an issue on initial read of ADC at program start. * 2)Reorder analog read order as follows: * p, q, r, ax, ay, az * * This library is free software; you can redistribute it and / or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * External ADC ADS7844 is connected via Serial port 2 (in SPI mode) * TXD2 = MOSI = pin PH1 * RXD2 = MISO = pin PH0 * XCK2 = SCK = pin PH2 * Chip Select pin is PC4 (33) [PH6 (9)] * We are using the 16 clocks per conversion timming to increase efficiency (fast) * * The sampling frequency is 1kHz (Timer2 overflow interrupt) * * So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so * we have an 10x oversampling and averaging. * * Methods: * Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt) * Ch(ch_num) : Return the ADC channel value * * // HJI - Input definitions. USB connector assumed to be on the left, Rx and servo * // connector pins to the rear. IMU shield components facing up. These are board * // referenced sensor inputs, not device referenced. * On Ardupilot Mega Hardware, oriented as described above: * Chennel 0 : yaw rate, r * Channel 1 : roll rate, p * Channel 2 : pitch rate, q * Channel 3 : x / y gyro temperature * Channel 4 : x acceleration, aX * Channel 5 : y acceleration, aY * Channel 6 : z acceleration, aZ * Channel 7 : Differential pressure sensor port * */ #include #include #include #include "AP_ADC_ADS7844.h" extern const AP_HAL::HAL& hal; // DO NOT CHANGE FROM 8!! #define ADC_ACCEL_FILTER_SIZE 8 // Commands for reading ADC channels on ADS7844 static const unsigned char adc_cmd[17] = { 0x87, 0, 0xC7, 0, 0x97, 0, 0xD7, 0, 0xA7, 0, 0xE7, 0, 0xB7, 0, 0xF7}; // the sum of the values since last read static volatile uint32_t _sum[8]; // how many values we've accumulated since last read static volatile uint16_t _count[8]; // variables to calculate time period over which a group of samples were // collected // time we start collecting sample (reset on update) static volatile uint32_t _ch6_delta_time_start_micros = 0; // time latest sample was collected static volatile uint32_t _ch6_last_sample_time_micros = 0; AP_HAL::SPIDeviceDriver* AP_ADC_ADS7844::_spi = NULL; AP_HAL::Semaphore* AP_ADC_ADS7844::_spi_sem = NULL; void AP_ADC_ADS7844::read(uint32_t tnow) { static int semfail_ctr = 0; uint8_t ch; if (_spi_sem) { bool got = _spi_sem->get((void*)&_spi_sem); if (!got) { semfail_ctr++; if (semfail_ctr > 100) { hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem " "100 times in AP_ADC_ADS7844::read")); } return; } else { semfail_ctr = 0; } } uint8_t rx[17]; _spi->transaction(adc_cmd, rx, 17); for (ch = 0; ch < 8; ch++) { uint16_t v = (rx[2*ch+1] << 8) | rx[2*ch+2]; if (v & 0x8007) { // this is a 12-bit ADC, shifted by 3 bits. // if we get other bits set then the value is // bogus and should be ignored continue; } if (++_count[ch] == 0) { // overflow ... shouldn't happen too often // unless we're just not using the // channel. Notice that we overflow the count // to 1 here, not zero, as otherwise the // reader below could get a division by zero _sum[ch] = 0; _count[ch] = 1; } _sum[ch] += (v >> 3); } if (_spi_sem) { bool released = _spi_sem->release((void*)&_spi_sem); if (!released) { hal.scheduler->panic(PSTR("PANIC: _spi_sem release failed in " "AP_ADC_ADS7844::read")); } } // record time of this sample _ch6_last_sample_time_micros = hal.scheduler->micros(); } // Constructors //////////////////////////////////////////////////////////////// AP_ADC_ADS7844::AP_ADC_ADS7844() { } // Public Methods ////////////////////////////////////////////////////////////// void AP_ADC_ADS7844::Init() { hal.scheduler->suspend_timer_procs(); _spi = hal.spi->device(AP_HAL::SPIDevice_ADS7844); if (_spi == NULL) { hal.scheduler->panic(PSTR("PANIC: AP_ADC_ADS7844 missing SPI device driver\n")); } _spi_sem = _spi->get_semaphore(); if (_spi_sem) { bool taken = _spi_sem->get((void*)&_spi_sem); if (!taken) { hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem in" "AP_ADC_ADS7844::Init")); } } _spi->cs_assert(); // get an initial value for each channel. This ensures // _count[] is never zero for (uint8_t i=0; i<8; i++) { uint16_t adc_tmp; adc_tmp = _spi->transfer(0) << 8; adc_tmp |= _spi->transfer(adc_cmd[i + 1]); _count[i] = 1; _sum[i] = adc_tmp; } _spi->cs_release(); if (_spi_sem) { bool released = _spi_sem->release((void*)&_spi_sem); if (!released) { hal.scheduler->panic(PSTR("PANIC: failed to release_spi_sem in " "AP_ADC_ADS7844::Init")); } } _ch6_last_sample_time_micros = hal.scheduler->micros(); hal.scheduler->register_timer_process( AP_ADC_ADS7844::read ); hal.scheduler->resume_timer_procs(); } // Read one channel value float AP_ADC_ADS7844::Ch(uint8_t ch_num) { uint16_t count; uint32_t sum; // ensure we have at least one value while (_count[ch_num] == 0) /* noop */; // grab the value with interrupts disabled, and clear the count hal.scheduler->begin_atomic(); count = _count[ch_num]; sum = _sum[ch_num]; _count[ch_num] = 0; _sum[ch_num] = 0; hal.scheduler->end_atomic(); return ((float)sum)/count; } // see if Ch6() can return new data bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers) { uint8_t i; for (i=0; i<6; i++) { if (_count[channel_numbers[i]] == 0) { return false; } } return true; } // Read 6 channel values // this assumes that the counts for all of the 6 channels are // equal. This will only be true if we always consistently access a // sensor by either Ch6() or Ch() and never mix them. If you mix them // then you will get very strange results uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, float *result) { uint16_t count[6]; uint32_t sum[6]; uint8_t i; // ensure we have at least one value for (i=0; i<6; i++) { while (_count[channel_numbers[i]] == 0) /* noop */; } // grab the values with interrupts disabled, and clear the counts hal.scheduler->begin_atomic(); for (i=0; i<6; i++) { count[i] = _count[channel_numbers[i]]; sum[i] = _sum[channel_numbers[i]]; _count[channel_numbers[i]] = 0; _sum[channel_numbers[i]] = 0; } // calculate the delta time. // we do this before re-enabling interrupts because another sensor read could fire immediately and change the _last_sensor_time value uint32_t ret = _ch6_last_sample_time_micros - _ch6_delta_time_start_micros; _ch6_delta_time_start_micros = _ch6_last_sample_time_micros; hal.scheduler->end_atomic(); // calculate averages. We keep this out of the cli region // to prevent us stalling the ISR while doing the // division. That costs us 36 bytes of stack, but I think its // worth it. for (i = 0; i < 6; i++) { result[i] = sum[i] / (float)count[i]; } // return number of microseconds since last call return ret; } /// Get minimum number of samples read from the sensors uint16_t AP_ADC_ADS7844::num_samples_available(const uint8_t *channel_numbers) { // get count of first channel as a base uint16_t min_count = _count[channel_numbers[0]]; // reduce to minimum count of all other channels for (uint8_t i=1; i<6; i++) { if (_count[channel_numbers[i]] < min_count) { min_count = _count[channel_numbers[i]]; } } return min_count; }