// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsTri.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsTri.h" extern const AP_HAL::HAL& hal; // init void AP_MotorsTri::Init() { // call parent Init function to set-up throttle curve AP_Motors::Init(); // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the ESCs can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_1] = true; motor_enabled[AP_MOTORS_MOT_2] = true; motor_enabled[AP_MOTORS_MOT_4] = true; // disable CH7 from being used as an aux output (i.e. for camera gimbal, etc) RC_Channel_aux::disable_aux_channel(AP_MOTORS_CH_TRI_YAW); } // set update rate to motors - a value in hertz void AP_MotorsTri::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the 3 motors (but not the servo on channel 7) uint32_t mask = 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) | 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) | 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]); hal.rcout->set_freq(mask, _speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsTri::enable() { // enable output channels hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW); } // output_min - sends minimum values out to the motors void AP_MotorsTri::output_min() { // set lower limit flag limit.throttle_lower = true; // send minimum value to each motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _rc_throttle.radio_min); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _rc_throttle.radio_min); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _rc_throttle.radio_min); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_CH_TRI_YAW]), _rc_yaw.radio_trim); } // output_armed - sends commands to the motors void AP_MotorsTri::output_armed() { int16_t out_min = _rc_throttle.radio_min + _min_throttle; int16_t out_max = _rc_throttle.radio_max; int16_t motor_out[AP_MOTORS_MOT_4+1]; // initialize lower limit flag limit.throttle_lower = false; // Throttle is 0 to 1000 only _rc_throttle.servo_out = constrain_int16(_rc_throttle.servo_out, 0, _max_throttle); // capture desired roll, pitch, yaw and throttle from receiver _rc_roll.calc_pwm(); _rc_pitch.calc_pwm(); _rc_throttle.calc_pwm(); _rc_yaw.calc_pwm(); // if we are not sending a throttle output, we cut the motors if(_rc_throttle.servo_out == 0) { // range check spin_when_armed if (_spin_when_armed_ramped < 0) { _spin_when_armed_ramped = 0; } if (_spin_when_armed_ramped > _min_throttle) { _spin_when_armed_ramped = _min_throttle; } motor_out[AP_MOTORS_MOT_1] = _rc_throttle.radio_min + _spin_when_armed_ramped; motor_out[AP_MOTORS_MOT_2] = _rc_throttle.radio_min + _spin_when_armed_ramped; motor_out[AP_MOTORS_MOT_4] = _rc_throttle.radio_min + _spin_when_armed_ramped; // Every thing is limited limit.throttle_lower = true; }else{ int16_t roll_out = (float)_rc_roll.pwm_out * 0.866f; int16_t pitch_out = _rc_pitch.pwm_out / 2; // check if throttle is below limit if (_rc_throttle.radio_out <= out_min) { limit.throttle_lower = true; } //left front motor_out[AP_MOTORS_MOT_2] = _rc_throttle.radio_out + roll_out + pitch_out; //right front motor_out[AP_MOTORS_MOT_1] = _rc_throttle.radio_out - roll_out + pitch_out; // rear motor_out[AP_MOTORS_MOT_4] = _rc_throttle.radio_out - _rc_pitch.pwm_out; // Tridge's stability patch if(motor_out[AP_MOTORS_MOT_1] > out_max) { motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max); motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max); motor_out[AP_MOTORS_MOT_1] = out_max; } if(motor_out[AP_MOTORS_MOT_2] > out_max) { motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max); motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max); motor_out[AP_MOTORS_MOT_2] = out_max; } if(motor_out[AP_MOTORS_MOT_4] > out_max) { motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max); motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max); motor_out[AP_MOTORS_MOT_4] = out_max; } // adjust for throttle curve if( _throttle_curve_enabled ) { motor_out[AP_MOTORS_MOT_1] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_1]); motor_out[AP_MOTORS_MOT_2] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_2]); motor_out[AP_MOTORS_MOT_4] = _throttle_curve.get_y(motor_out[AP_MOTORS_MOT_4]); } // ensure motors don't drop below a minimum value and stop motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min); motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min); motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min); } // send output to each motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), motor_out[AP_MOTORS_MOT_1]); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), motor_out[AP_MOTORS_MOT_2]); hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), motor_out[AP_MOTORS_MOT_4]); // also send out to tail command (we rely on any auto pilot to have updated the rc_yaw->radio_out to the correct value) // note we do not save the radio_out to the motor_out array so it may not appear in the ch7out in the status screen of the mission planner // note: we use _rc_tail's (aka channel 7's) REV parameter to control whether the servo is reversed or not but this is a bit nonsensical. // a separate servo object (including min, max settings etc) would be better or at least a separate parameter to specify the direction of the tail servo if( _rc_tail.get_reverse() == true ) { hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw.radio_trim - (_rc_yaw.radio_out - _rc_yaw.radio_trim)); }else{ hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw.radio_out); } } // output_disarmed - sends commands to the motors void AP_MotorsTri::output_disarmed() { // Send minimum values to all motors output_min(); } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsTri::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!_flags.armed) { return; } // output to motors and servos switch (motor_seq) { case 1: // front right motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm); break; case 2: // back motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm); break; case 3: // back servo hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), pwm); break; case 4: // front left motor hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm); break; default: // do nothing break; } }