// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * AP_MotorsMatrix.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include #include "AP_MotorsMatrix.h" extern const AP_HAL::HAL& hal; // Init void AP_MotorsMatrix::Init() { // call parent Init function to set-up throttle curve AP_Motors::Init(); // setup the motors setup_motors(); // enable fast channels or instant pwm set_update_rate(_speed_hz); } // set update rate to motors - a value in hertz void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz ) { int8_t i; // record requested speed _speed_hz = speed_hz; // check each enabled motor uint32_t mask = 0; for( i=0; iset_freq( mask, _speed_hz ); } // set frame orientation (normally + or X) void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation ) { // return if nothing has changed if( new_orientation == _frame_orientation ) { return; } // call parent AP_Motors::set_frame_orientation( new_orientation ); // setup the motors setup_motors(); // enable fast channels or instant pwm set_update_rate(_speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsMatrix::enable() { int8_t i; // enable output channels for( i=0; ienable_ch(_motor_to_channel_map[i]); } } } // output_min - sends minimum values out to the motors void AP_MotorsMatrix::output_min() { int8_t i; // fill the motor_out[] array for HIL use and send minimum value to each motor for( i=0; iradio_min; hal.rcout->write(_motor_to_channel_map[i], motor_out[i]); } } } #ifdef AP_MOTORS_MATRIX_SCALING_STABILITY_PATCH // output_armed - sends commands to the motors // includes new scaling stability patch void AP_MotorsMatrix::output_armed() { int8_t i; int16_t out_min = _rc_throttle->radio_min + _min_throttle; int16_t out_max = _rc_throttle->radio_max; int16_t out_mid = (out_min+out_max)/2; int16_t out_max_range; // the is the allowable throttle out setting that allowes maximum roll, pitch and yaw range float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. int16_t rpy_low = 0; // lowest motor value int16_t rpy_high = 0; // highest motor value int16_t yaw_allowed; // amount of yaw we can fit in int16_t thr_adj; // how far we move the throttle point from out_max_range // initialize reached_limit flag _reached_limit = AP_MOTOR_NO_LIMITS_REACHED; // Throttle is 0 to 1000 only // To-Do: we should not really be limiting this here because we don't "own" this _rc_throttle object _rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle); // capture desired roll, pitch, yaw and throttle from receiver _rc_roll->calc_pwm(); _rc_pitch->calc_pwm(); _rc_throttle->calc_pwm(); _rc_yaw->calc_pwm(); // if we are not sending a throttle output, we cut the motors if (_rc_throttle->servo_out == 0) { // range check spin_when_armed if (_spin_when_armed < 0) { _spin_when_armed = 0; } if (_spin_when_armed > _min_throttle) { _spin_when_armed = _min_throttle; } for (i=0; iradio_min + _spin_when_armed; } } // Every thing is limited _reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT | AP_MOTOR_THROTTLE_LIMIT; } else { // check if throttle is below limit if (_rc_throttle->radio_out < out_min) { _reached_limit |= AP_MOTOR_THROTTLE_LIMIT; } // calculate roll and pitch for each motor for (i=0; ipwm_out * _roll_factor[i] + _rc_pitch->pwm_out * _pitch_factor[i]; // record lowest roll pitch command if (rpy_out[i] < rpy_low) { rpy_low = rpy_out[i]; } // record highest roll pich command if (rpy_out[i] > rpy_high) { rpy_high = rpy_out[i]; } } } // calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) // this value is either: // mid throttle - average of highest and lowest motor // the higher of the pilot's throttle input or hover-throttle -- this ensure we never increase the throttle above hover throttle unless the pilot has commanded that int16_t motor_mid = (rpy_low+rpy_high)/2; out_max_range = min(out_mid - motor_mid, max(_rc_throttle->radio_out, (_rc_throttle->radio_out+_hover_out)/2)); // calculate amount of yaw we can fit into the throttle range // this is always equal to or less than the requested yaw from the pilot or rate controller yaw_allowed = min(out_max - out_max_range, out_max_range - out_min) - (rpy_high-rpy_low)/2; yaw_allowed = max(yaw_allowed, AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM); if (_rc_yaw->pwm_out >= 0) { // if yawing right if (yaw_allowed > _rc_yaw->pwm_out) { yaw_allowed = _rc_yaw->pwm_out; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output }else{ _reached_limit |= AP_MOTOR_YAW_LIMIT; } }else{ // if yawing left yaw_allowed = -yaw_allowed; if( yaw_allowed < _rc_yaw->pwm_out ) { yaw_allowed = _rc_yaw->pwm_out; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output }else{ _reached_limit |= AP_MOTOR_YAW_LIMIT; } } // add yaw to intermediate numbers for each motor for (i=0; i rpy_high) { rpy_high = rpy_out[i]; } } } // check everything fits thr_adj = _rc_throttle->radio_out - out_max_range; if (thr_adj > 0) { // increase throttle as close as possible to requested throttle // without going over out_max if (thr_adj > out_max-(rpy_high+out_max_range)){ thr_adj = out_max-(rpy_high+out_max_range); // we haven't even been able to apply full throttle command _reached_limit |= AP_MOTOR_THROTTLE_LIMIT; } }else if(thr_adj < 0){ // decrease throttle as close as possible to requested throttle // without going under out_min or over out_max // earlier code ensures we can't break both boundaryies thr_adj = max(min(thr_adj,out_max-(rpy_high+out_max_range)), min(out_min-(rpy_low+out_max_range),0)); } // do we need to reduce roll, pitch, yaw command // earlier code does not allow both limit's to be passed simultainiously with abs(_yaw_factor)<1 if ((rpy_low+out_max_range)+thr_adj < out_min){ rpy_scale = (float)(out_min-thr_adj-out_max_range)/rpy_low; // we haven't even been able to apply full roll, pitch and minimal yaw without scaling _reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT; }else if((rpy_high+out_max_range)+thr_adj > out_max){ rpy_scale = (float)(out_max-thr_adj-out_max_range)/rpy_high; // we haven't even been able to apply full roll, pitch and minimal yaw without scaling _reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT | AP_MOTOR_YAW_LIMIT; } // add scaled roll, pitch, constrained yaw and throttle for each motor for (i=0; iwrite(_motor_to_channel_map[i], motor_out[i]); } } } #else // output_armed - sends commands to the motors void AP_MotorsMatrix::output_armed() { int8_t i; int16_t out_min = _rc_throttle->radio_min; int16_t out_max = _rc_throttle->radio_max; int16_t rc_yaw_constrained_pwm; int16_t rc_yaw_excess; int16_t upper_margin, lower_margin; int16_t motor_adjustment = 0; int16_t yaw_to_execute = 0; // initialize reached_limit flag _reached_limit = AP_MOTOR_NO_LIMITS_REACHED; // Throttle is 0 to 1000 only _rc_throttle->servo_out = constrain_int16(_rc_throttle->servo_out, 0, _max_throttle); // capture desired roll, pitch, yaw and throttle from receiver _rc_roll->calc_pwm(); _rc_pitch->calc_pwm(); _rc_throttle->calc_pwm(); _rc_yaw->calc_pwm(); // if we are not sending a throttle output, we cut the motors if(_rc_throttle->servo_out == 0) { for( i=0; iradio_min; } } // if we have any roll, pitch or yaw input then it's breaching the limit if( _rc_roll->pwm_out != 0 || _rc_pitch->pwm_out != 0 ) { _reached_limit |= AP_MOTOR_ROLLPITCH_LIMIT; } if( _rc_yaw->pwm_out != 0 ) { _reached_limit |= AP_MOTOR_YAW_LIMIT; } } else { // non-zero throttle out_min = _rc_throttle->radio_min + _min_throttle; // initialise rc_yaw_contrained_pwm that we will certainly output and rc_yaw_excess that we will do on best-efforts basis. // Note: these calculations and many others below depend upon _yaw_factors always being 0, -1 or 1. if( _rc_yaw->pwm_out < -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) { rc_yaw_constrained_pwm = -AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM; rc_yaw_excess = _rc_yaw->pwm_out+AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM; }else if( _rc_yaw->pwm_out > AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM ) { rc_yaw_constrained_pwm = AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM; rc_yaw_excess = _rc_yaw->pwm_out-AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM; }else{ rc_yaw_constrained_pwm = _rc_yaw->pwm_out; rc_yaw_excess = 0; } // initialise upper and lower margins upper_margin = lower_margin = out_max - out_min; // add roll, pitch, throttle and constrained yaw for each motor for( i=0; iradio_out + _rc_roll->pwm_out * _roll_factor[i] + _rc_pitch->pwm_out * _pitch_factor[i] + rc_yaw_constrained_pwm * _yaw_factor[i]; // calculate remaining room between fastest running motor and top of pwm range if( out_max - motor_out[i] < upper_margin) { upper_margin = out_max - motor_out[i]; } // calculate remaining room between slowest running motor and bottom of pwm range if( motor_out[i] - out_min < lower_margin ) { lower_margin = motor_out[i] - out_min; } } } // if motors are running too fast and we have enough room below, lower overall throttle if( upper_margin < 0 || lower_margin < 0 ) { // calculate throttle adjustment that equalizes upper and lower margins. We will never push the throttle beyond this point motor_adjustment = (upper_margin - lower_margin) / 2; // i.e. if overflowed by 20 on top, 30 on bottom, upper_margin = -20, lower_margin = -30. will adjust motors -5. // if we have overflowed on the top, reduce but no more than to the mid point if( upper_margin < 0 ) { motor_adjustment = max(upper_margin, motor_adjustment); } // if we have underflowed on the bottom, increase throttle but no more than to the mid point if( lower_margin < 0 ) { motor_adjustment = min(-lower_margin, motor_adjustment); } } // move throttle up or down to to pull within tolerance if( motor_adjustment != 0 ) { for( i=0; i 0 && _yaw_factor[i] > 0 ) { yaw_to_execute = min(yaw_to_execute, upper_margin); } // motor is decreasing, check lower limit if( rc_yaw_excess > 0 && _yaw_factor[i] < 0 ) { yaw_to_execute = min(yaw_to_execute, lower_margin); } // motor is decreasing, check lower limit if( rc_yaw_excess < 0 && _yaw_factor[i] > 0 ) { yaw_to_execute = max(yaw_to_execute, -lower_margin); } // motor is increasing, check upper limit if( rc_yaw_excess < 0 && _yaw_factor[i] < 0 ) { yaw_to_execute = max(yaw_to_execute, -upper_margin); } } } // check yaw_to_execute is reasonable if( yaw_to_execute != 0 && ((yaw_to_execute>0 && rc_yaw_excess>0) || (yaw_to_execute<0 && rc_yaw_excess<0)) ) { // add the additional yaw for( i=0; iwrite(_motor_to_channel_map[i], motor_out[i]); } } } #endif // AP_MOTORS_MATRIX_SCALING_STABILITY_PATCH // output_disarmed - sends commands to the motors void AP_MotorsMatrix::output_disarmed() { // Send minimum values to all motors output_min(); } // output_disarmed - sends commands to the motors void AP_MotorsMatrix::output_test() { uint8_t min_order, max_order; uint8_t i,j; // find min and max orders min_order = _test_order[0]; max_order = _test_order[0]; for(i=1; i max_order ) max_order = _test_order[i]; } // shut down all motors output_min(); // first delay is longer hal.scheduler->delay(4000); // loop through all the possible orders spinning any motors that match that description for( i=min_order; i<=max_order; i++ ) { for( j=0; jwrite(_motor_to_channel_map[j], _rc_throttle->radio_min + _min_throttle); hal.scheduler->delay(300); hal.rcout->write(_motor_to_channel_map[j], _rc_throttle->radio_min); hal.scheduler->delay(2000); } } } // shut down all motors output_min(); } // add_motor void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order) { // ensure valid motor number is provided if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { // increment number of motors if this motor is being newly motor_enabled if( !motor_enabled[motor_num] ) { motor_enabled[motor_num] = true; _num_motors++; } // set roll, pitch, thottle factors and opposite motor (for stability patch) _roll_factor[motor_num] = roll_fac; _pitch_factor[motor_num] = pitch_fac; _yaw_factor[motor_num] = yaw_fac; // set order that motor appears in test _test_order[motor_num] = testing_order; } } // add_motor using just position and prop direction void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order) { // call raw motor set-up method add_motor_raw( motor_num, cosf(radians(angle_degrees + 90)), // roll factor cosf(radians(angle_degrees)), // pitch factor yaw_factor, // yaw factor testing_order); } // remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor void AP_MotorsMatrix::remove_motor(int8_t motor_num) { // ensure valid motor number is provided if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { // if the motor was enabled decrement the number of motors if( motor_enabled[motor_num] ) _num_motors--; // disable the motor, set all factors to zero motor_enabled[motor_num] = false; _roll_factor[motor_num] = 0; _pitch_factor[motor_num] = 0; _yaw_factor[motor_num] = 0; } } // remove_all_motors - removes all motor definitions void AP_MotorsMatrix::remove_all_motors() { for( int8_t i=0; i