#include "Plane.h" // set the nav_controller pointer to the right controller void Plane::set_nav_controller(void) { switch ((AP_Navigation::ControllerType)g.nav_controller.get()) { default: case AP_Navigation::CONTROLLER_DEFAULT: // no break, fall through to L1 as default controller case AP_Navigation::CONTROLLER_L1: nav_controller = &L1_controller; break; } } /* reset the total loiter angle */ void Plane::loiter_angle_reset(void) { loiter.sum_cd = 0; loiter.total_cd = 0; loiter.reached_target_alt = false; loiter.unable_to_acheive_target_alt = false; } /* update the total angle we have covered in a loiter. Used to support commands to do N circles of loiter */ void Plane::loiter_angle_update(void) { static const int32_t lap_check_interval_cd = 3*36000; const int32_t target_bearing_cd = nav_controller->target_bearing_cd(); int32_t loiter_delta_cd; if (loiter.sum_cd == 0 && !reached_loiter_target()) { // we don't start summing until we are doing the real loiter loiter_delta_cd = 0; } else if (loiter.sum_cd == 0) { // use 1 cd for initial delta loiter_delta_cd = 1; loiter.start_lap_alt_cm = current_loc.alt; loiter.next_sum_lap_cd = lap_check_interval_cd; } else { loiter_delta_cd = target_bearing_cd - loiter.old_target_bearing_cd; } loiter.old_target_bearing_cd = target_bearing_cd; loiter_delta_cd = wrap_180_cd(loiter_delta_cd); loiter.sum_cd += loiter_delta_cd * loiter.direction; if (labs(current_loc.alt - next_WP_loc.alt) < 500) { loiter.reached_target_alt = true; loiter.unable_to_acheive_target_alt = false; loiter.next_sum_lap_cd = loiter.sum_cd + lap_check_interval_cd; } else if (!loiter.reached_target_alt && labs(loiter.sum_cd) >= loiter.next_sum_lap_cd) { // check every few laps for scenario where up/downdrafts inhibit you from loitering up/down for too long loiter.unable_to_acheive_target_alt = labs(current_loc.alt - loiter.start_lap_alt_cm) < 500; loiter.start_lap_alt_cm = current_loc.alt; loiter.next_sum_lap_cd += lap_check_interval_cd; } } //**************************************************************** // Function that will calculate the desired direction to fly and distance //**************************************************************** void Plane::navigate() { // allow change of nav controller mid-flight set_nav_controller(); // do not navigate with corrupt data // --------------------------------- if (!have_position) { return; } if (next_WP_loc.lat == 0 && next_WP_loc.lng == 0) { return; } // waypoint distance from plane // ---------------------------- auto_state.wp_distance = current_loc.get_distance(next_WP_loc); auto_state.wp_proportion = current_loc.line_path_proportion(prev_WP_loc, next_WP_loc); SpdHgt_Controller->set_path_proportion(auto_state.wp_proportion); // update total loiter angle loiter_angle_update(); // control mode specific updates to navigation demands // --------------------------------------------------- control_mode->navigate(); } void Plane::calc_airspeed_errors() { float airspeed_measured = 0; // we use the airspeed estimate function not direct sensor as TECS // may be using synthetic airspeed ahrs.airspeed_estimate(airspeed_measured); // FBW_B/cruise airspeed target if (!failsafe.rc_failsafe && (control_mode == &mode_fbwb || control_mode == &mode_cruise)) { if (g2.flight_options & FlightOptions::CRUISE_TRIM_AIRSPEED) { target_airspeed_cm = aparm.airspeed_cruise_cm; } else if (g2.flight_options & FlightOptions::CRUISE_TRIM_THROTTLE) { float control_min = 0.0f; float control_mid = 0.0f; const float control_max = channel_throttle->get_range(); const float control_in = get_throttle_input(); switch (channel_throttle->get_type()) { case RC_Channel::RC_CHANNEL_TYPE_ANGLE: control_min = -control_max; break; case RC_Channel::RC_CHANNEL_TYPE_RANGE: control_mid = channel_throttle->get_control_mid(); break; } if (control_in <= control_mid) { target_airspeed_cm = linear_interpolate(aparm.airspeed_min * 100, aparm.airspeed_cruise_cm, control_in, control_min, control_mid); } else { target_airspeed_cm = linear_interpolate(aparm.airspeed_cruise_cm, aparm.airspeed_max * 100, control_in, control_mid, control_max); } } else { target_airspeed_cm = ((int32_t)(aparm.airspeed_max - aparm.airspeed_min) * get_throttle_input()) + ((int32_t)aparm.airspeed_min * 100); } #if OFFBOARD_GUIDED == ENABLED } else if (control_mode == &mode_guided && !is_zero(guided_state.target_airspeed_cm)) { // offboard airspeed demanded uint32_t now = AP_HAL::millis(); float delta = 1e-3f * (now - guided_state.target_airspeed_time_ms); guided_state.target_airspeed_time_ms = now; float delta_amt = 100 * delta * guided_state.target_airspeed_accel; target_airspeed_cm += delta_amt; //target_airspeed_cm recalculated then clamped to between MIN airspeed and MAX airspeed by constrain_float if (is_positive(guided_state.target_airspeed_accel)) { target_airspeed_cm = constrain_float(MIN(guided_state.target_airspeed_cm, target_airspeed_cm), aparm.airspeed_min *100, aparm.airspeed_max *100); } else { target_airspeed_cm = constrain_float(MAX(guided_state.target_airspeed_cm, target_airspeed_cm), aparm.airspeed_min *100, aparm.airspeed_max *100); } #endif // OFFBOARD_GUIDED == ENABLED } else if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) { // Landing airspeed target target_airspeed_cm = landing.get_target_airspeed_cm(); } else if ((control_mode == &mode_auto) && (quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH) && ((vtol_approach_s.approach_stage == Landing_ApproachStage::APPROACH_LINE) || (vtol_approach_s.approach_stage == Landing_ApproachStage::VTOL_LANDING))) { const float land_airspeed = SpdHgt_Controller->get_land_airspeed(); if (is_positive(land_airspeed)) { target_airspeed_cm = land_airspeed * 100; } else { // fallover to normal airspeed target_airspeed_cm = aparm.airspeed_cruise_cm; } } else { // Normal airspeed target target_airspeed_cm = aparm.airspeed_cruise_cm; } // Set target to current airspeed + ground speed undershoot, // but only when this is faster than the target airspeed commanded // above. if (auto_throttle_mode && aparm.min_gndspeed_cm > 0 && control_mode != &mode_circle) { int32_t min_gnd_target_airspeed = airspeed_measured*100 + groundspeed_undershoot; if (min_gnd_target_airspeed > target_airspeed_cm) { target_airspeed_cm = min_gnd_target_airspeed; } } // when using the special GUIDED mode features for slew control, don't allow airspeed nudging as it doesn't play nicely. #if OFFBOARD_GUIDED == ENABLED if (control_mode == &mode_guided && !is_zero(guided_state.target_airspeed_cm) && (airspeed_nudge_cm != 0)) { airspeed_nudge_cm = 0; //airspeed_nudge_cm forced to zero } #endif // Bump up the target airspeed based on throttle nudging if (throttle_allows_nudging && airspeed_nudge_cm > 0) { target_airspeed_cm += airspeed_nudge_cm; } // Apply airspeed limit if (target_airspeed_cm > (aparm.airspeed_max * 100)) target_airspeed_cm = (aparm.airspeed_max * 100); // use the TECS view of the target airspeed for reporting, to take // account of the landing speed airspeed_error = SpdHgt_Controller->get_target_airspeed() - airspeed_measured; } void Plane::calc_gndspeed_undershoot() { // Use the component of ground speed in the forward direction // This prevents flyaway if wind takes plane backwards if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) { Vector2f gndVel = ahrs.groundspeed_vector(); const Matrix3f &rotMat = ahrs.get_rotation_body_to_ned(); Vector2f yawVect = Vector2f(rotMat.a.x,rotMat.b.x); if (!yawVect.is_zero()) { yawVect.normalize(); float gndSpdFwd = yawVect * gndVel; groundspeed_undershoot = (aparm.min_gndspeed_cm > 0) ? (aparm.min_gndspeed_cm - gndSpdFwd*100) : 0; } } else { groundspeed_undershoot = 0; } } void Plane::update_loiter(uint16_t radius) { if (radius <= 1) { // if radius is <=1 then use the general loiter radius. if it's small, use default radius = (abs(aparm.loiter_radius) <= 1) ? LOITER_RADIUS_DEFAULT : abs(aparm.loiter_radius); if (next_WP_loc.loiter_ccw == 1) { loiter.direction = -1; } else { loiter.direction = (aparm.loiter_radius < 0) ? -1 : 1; } } if (loiter.start_time_ms != 0 && quadplane.guided_mode_enabled()) { if (!auto_state.vtol_loiter) { auto_state.vtol_loiter = true; // reset loiter start time, so we don't consider the point // reached till we get much closer loiter.start_time_ms = 0; quadplane.guided_start(); } } else if ((loiter.start_time_ms == 0 && (control_mode == &mode_auto || control_mode == &mode_guided) && auto_state.crosstrack && current_loc.get_distance(next_WP_loc) > radius*3) || (control_mode == &mode_rtl && quadplane.available() && quadplane.rtl_mode == 1)) { /* if never reached loiter point and using crosstrack and somewhat far away from loiter point navigate to it like in auto-mode for normal crosstrack behavior we also use direct waypoint navigation if we are a quadplane that is going to be switching to QRTL when it gets within RTL_RADIUS */ nav_controller->update_waypoint(prev_WP_loc, next_WP_loc); } else { nav_controller->update_loiter(next_WP_loc, radius, loiter.direction); } if (loiter.start_time_ms == 0) { if (reached_loiter_target() || auto_state.wp_proportion > 1) { // we've reached the target, start the timer loiter.start_time_ms = millis(); if (control_mode == &mode_guided || control_mode == &mode_avoidADSB) { // starting a loiter in GUIDED means we just reached the target point gcs().send_mission_item_reached_message(0); } if (quadplane.guided_mode_enabled()) { quadplane.guided_start(); } } } } /* handle speed and height control in FBWB or CRUISE mode. In this mode the elevator is used to change target altitude. The throttle is used to change target airspeed or throttle */ void Plane::update_fbwb_speed_height(void) { uint32_t now = micros(); if (now - target_altitude.last_elev_check_us >= 100000) { // we don't run this on every loop as it would give too small granularity on quadplanes at 300Hz, and // give below 1cm altitude change, which would result in no climb or descent float dt = (now - target_altitude.last_elev_check_us) * 1.0e-6; dt = constrain_float(dt, 0.1, 0.15); target_altitude.last_elev_check_us = now; float elevator_input = channel_pitch->get_control_in() / 4500.0f; if (g.flybywire_elev_reverse) { elevator_input = -elevator_input; } int32_t alt_change_cm = g.flybywire_climb_rate * elevator_input * dt * 100; change_target_altitude(alt_change_cm); if (is_zero(elevator_input) && !is_zero(target_altitude.last_elevator_input)) { // the user has just released the elevator, lock in // the current altitude set_target_altitude_current(); } #if SOARING_ENABLED == ENABLED if (g2.soaring_controller.is_active() && g2.soaring_controller.get_throttle_suppressed()) { // we're in soaring mode with throttle suppressed set_target_altitude_current();; } #endif target_altitude.last_elevator_input = elevator_input; } check_fbwb_minimum_altitude(); altitude_error_cm = calc_altitude_error_cm(); calc_throttle(); calc_nav_pitch(); } /* calculate the turn angle for the next leg of the mission */ void Plane::setup_turn_angle(void) { int32_t next_ground_course_cd = mission.get_next_ground_course_cd(-1); if (next_ground_course_cd == -1) { // the mission library can't determine a turn angle, assume 90 degrees auto_state.next_turn_angle = 90.0f; } else { // get the heading of the current leg int32_t ground_course_cd = prev_WP_loc.get_bearing_to(next_WP_loc); // work out the angle we need to turn through auto_state.next_turn_angle = wrap_180_cd(next_ground_course_cd - ground_course_cd) * 0.01f; } } /* see if we have reached our loiter target */ bool Plane::reached_loiter_target(void) { if (quadplane.in_vtol_auto()) { return auto_state.wp_distance < 3; } return nav_controller->reached_loiter_target(); }