/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" // performs pre-arm checks. expects to be called at 1hz. void Copter::update_arming_checks(void) { // perform pre-arm checks & display failures every 30 seconds static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2; pre_arm_display_counter++; bool display_fail = false; if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) { display_fail = true; pre_arm_display_counter = 0; } if (pre_arm_checks(display_fail)) { set_pre_arm_check(true); } } // performs pre-arm checks and arming checks bool Copter::all_arming_checks_passing(bool arming_from_gcs) { if (pre_arm_checks(true)) { set_pre_arm_check(true); } return ap.pre_arm_check && arm_checks(true, arming_from_gcs); } // perform pre-arm checks and set ap.pre_arm_check flag // return true if the checks pass successfully bool Copter::pre_arm_checks(bool display_failure) { // exit immediately if already armed if (motors.armed()) { return true; } // check if motor interlock and Emergency Stop aux switches are used // at the same time. This cannot be allowed. if (check_if_auxsw_mode_used(AUXSW_MOTOR_INTERLOCK) && check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){ if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Interlock/E-Stop Conflict"); } return false; } // check if motor interlock aux switch is in use // if it is, switch needs to be in disabled position to arm // otherwise exit immediately. This check to be repeated, // as state can change at any time. if (ap.using_interlock && motors.get_interlock()){ if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Motor Interlock Enabled"); } return false; } // exit immediately if we've already successfully performed the pre-arm check if (ap.pre_arm_check) { // run gps checks because results may change and affect LED colour // no need to display failures because arm_checks will do that if the pilot tries to arm pre_arm_gps_checks(false); return true; } // succeed if pre arm checks are disabled if (g.arming_check == ARMING_CHECK_NONE) { set_pre_arm_check(true); set_pre_arm_rc_check(true); return true; } // pre-arm rc checks a prerequisite pre_arm_rc_checks(); if (!ap.pre_arm_rc_check) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: RC not calibrated"); } return false; } // check Baro if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { // barometer health check if (!barometer.all_healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Barometer not healthy"); } return false; } // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (using_baro_ref) { if (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Altitude disparity"); } return false; } } } // check Compass if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) { //check if compass has calibrated and requires reboot if (compass.compass_cal_requires_reboot()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Compass calibrated requires reboot"); } return false; } // check the primary compass is healthy if (!compass.healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not healthy"); } return false; } // check compass learning is on or offsets have been set if (!compass.configured()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass not calibrated"); } return false; } // check for unreasonable compass offsets Vector3f offsets = compass.get_offsets(); if (offsets.length() > COMPASS_OFFSETS_MAX) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Compass offsets too high"); } return false; } // check for unreasonable mag field length float mag_field = compass.get_field().length(); if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65f || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35f) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check mag field"); } return false; } // check all compasses point in roughly same direction if (!compass.consistent()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent compasses"); } return false; } } // check GPS if (!pre_arm_gps_checks(display_failure)) { return false; } #if AC_FENCE == ENABLED // check fence is initialised if (!fence.pre_arm_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check fence"); } return false; } #endif // check INS if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { // check accelerometers have been calibrated if (!ins.accel_calibrated_ok_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accels not calibrated"); } return false; } // check accels are healthy if (!ins.get_accel_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Accelerometers not healthy"); } return false; } //check if accelerometers have calibrated and require reboot if (ins.accel_cal_requires_reboot()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot"); } return false; } // check all accelerometers point in roughly same direction if (ins.get_accel_count() > 1) { const Vector3f &prime_accel_vec = ins.get_accel(); for(uint8_t i=0; i= 2) { /* * for boards with 3 IMUs we only use the first two * in the EKF. Allow for larger accel discrepancy * for IMU3 as it may be running at a different temperature */ threshold *= 2; } if (vec_diff.length() > threshold) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Accelerometers"); } return false; } } } // check gyros are healthy if (!ins.get_gyro_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Gyros not healthy"); } return false; } // check all gyros are consistent if (ins.get_gyro_count() > 1) { for(uint8_t i=0; i PREARM_MAX_GYRO_VECTOR_DIFF) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: inconsistent Gyros"); } return false; } } } // get ekf attitude (if bad, it's usually the gyro biases) if (!pre_arm_ekf_attitude_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: gyros still settling"); } return false; } } #if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN #ifndef CONFIG_ARCH_BOARD_PX4FMU_V1 // check board voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if (hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Board Voltage"); } return false; } } #endif #endif // check battery voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check Battery"); } return false; } } // check various parameter values if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { // ensure ch7 and ch8 have different functions if (check_duplicate_auxsw()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Duplicate Aux Switch Options"); } return false; } // failsafe parameter checks if (g.failsafe_throttle) { // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 if (channel_throttle->get_radio_min() <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check FS_THR_VALUE"); } return false; } } // lean angle parameter check if (aparm.angle_max < 1000 || aparm.angle_max > 8000) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Check ANGLE_MAX"); } return false; } // acro balance parameter check if ((g.acro_balance_roll > attitude_control.get_angle_roll_p().kP()) || (g.acro_balance_pitch > attitude_control.get_angle_pitch_p().kP())) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: ACRO_BAL_ROLL/PITCH"); } return false; } #if CONFIG_SONAR == ENABLED && OPTFLOW == ENABLED // check range finder if optflow enabled if (optflow.enabled() && !sonar.pre_arm_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: check range finder"); } return false; } #endif #if FRAME_CONFIG == HELI_FRAME // check helicopter parameters if (!motors.parameter_check(display_failure)) { return false; } #endif // HELI_FRAME // check for missing terrain data if (!pre_arm_terrain_check()) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Terrain data"); return false; } } // check throttle is above failsafe throttle // this is near the bottom to allow other failures to be displayed before checking pilot throttle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) { if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->get_radio_in() < g.failsafe_throttle_value) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Collective below Failsafe"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Throttle below Failsafe"); #endif } return false; } } return true; } // perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag void Copter::pre_arm_rc_checks() { // exit immediately if we've already successfully performed the pre-arm rc check if (ap.pre_arm_rc_check) { return; } // set rc-checks to success if RC checks are disabled if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) { set_pre_arm_rc_check(true); return; } // check if radio has been calibrated if (!channel_throttle->min_max_configured()) { return; } // check channels 1 & 2 have min <= 1300 and max >= 1700 if (channel_roll->get_radio_min() > 1300 || channel_roll->get_radio_max() < 1700 || channel_pitch->get_radio_min() > 1300 || channel_pitch->get_radio_max() < 1700) { return; } // check channels 3 & 4 have min <= 1300 and max >= 1700 if (channel_throttle->get_radio_min() > 1300 || channel_throttle->get_radio_max() < 1700 || channel_yaw->get_radio_min() > 1300 || channel_yaw->get_radio_max() < 1700) { return; } // check channels 1 & 2 have trim >= 1300 and <= 1700 if (channel_roll->get_radio_trim() < 1300 || channel_roll->get_radio_trim() > 1700 || channel_pitch->get_radio_trim() < 1300 || channel_pitch->get_radio_trim() > 1700) { return; } // check channel 4 has trim >= 1300 and <= 1700 if (channel_yaw->get_radio_trim() < 1300 || channel_yaw->get_radio_trim() > 1700) { return; } // if we've gotten this far rc is ok set_pre_arm_rc_check(true); } // performs pre_arm gps related checks and returns true if passed bool Copter::pre_arm_gps_checks(bool display_failure) { // always check if inertial nav has started and is ready if (!ahrs.healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Waiting for Nav Checks"); } return false; } // check if flight mode requires GPS bool gps_required = mode_requires_GPS(control_mode); #if AC_FENCE == ENABLED // if circular fence is enabled we need GPS if ((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) { gps_required = true; } #endif // return true if GPS is not required if (!gps_required) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // ensure GPS is ok if (!position_ok()) { if (display_failure) { const char *reason = ahrs.prearm_failure_reason(); if (reason) { GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: %s", reason); } else { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: Need 3D Fix"); } } AP_Notify::flags.pre_arm_gps_check = false; return false; } // check EKF compass variance is below failsafe threshold float vel_variance, pos_variance, hgt_variance, tas_variance; Vector3f mag_variance; Vector2f offset; ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance, offset); if (mag_variance.length() >= g.fs_ekf_thresh) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF compass variance"); } return false; } // check home and EKF origin are not too far if (far_from_EKF_origin(ahrs.get_home())) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: EKF-home variance"); } AP_Notify::flags.pre_arm_gps_check = false; return false; } // return true immediately if gps check is disabled if (!(g.arming_check == ARMING_CHECK_ALL || g.arming_check & ARMING_CHECK_GPS)) { AP_Notify::flags.pre_arm_gps_check = true; return true; } // warn about hdop separately - to prevent user confusion with no gps lock if (gps.get_hdop() > g.gps_hdop_good) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"PreArm: High GPS HDOP"); } AP_Notify::flags.pre_arm_gps_check = false; return false; } // if we got here all must be ok AP_Notify::flags.pre_arm_gps_check = true; return true; } // check ekf attitude is acceptable bool Copter::pre_arm_ekf_attitude_check() { // get ekf filter status nav_filter_status filt_status = inertial_nav.get_filter_status(); return filt_status.flags.attitude; } // check we have required terrain data bool Copter::pre_arm_terrain_check() { #if AP_TERRAIN_AVAILABLE && AC_TERRAIN // succeed if not using terrain data if (!terrain_use()) { return true; } // show terrain statistics uint16_t terr_pending, terr_loaded; terrain.get_statistics(terr_pending, terr_loaded); return (terr_pending <= 0); #else return true; #endif } // arm_checks - perform final checks before arming // always called just before arming. Return true if ok to arm // has side-effect that logging is started bool Copter::arm_checks(bool display_failure, bool arming_from_gcs) { #if LOGGING_ENABLED == ENABLED // start dataflash start_logging(); #endif // check accels and gyro are healthy if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { //check if accelerometers have calibrated and require reboot if (ins.accel_cal_requires_reboot()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Accelerometers calibrated requires reboot"); } return false; } if (!ins.get_accel_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Accelerometers not healthy"); } return false; } if (!ins.get_gyro_health_all()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Gyros not healthy"); } return false; } // get ekf attitude (if bad, it's usually the gyro biases) if (!pre_arm_ekf_attitude_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: gyros still settling"); } return false; } } // always check if inertial nav has started and is ready if (!ahrs.healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Waiting for Nav Checks"); } return false; } if (compass.is_calibrating()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Compass calibration running"); } return false; } //check if compass has calibrated and requires reboot if (compass.compass_cal_requires_reboot()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL, "PreArm: Compass calibrated requires reboot"); } return false; } // always check if the current mode allows arming if (!mode_allows_arming(control_mode, arming_from_gcs)) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Mode not armable"); } return false; } // always check gps if (!pre_arm_gps_checks(display_failure)) { return false; } // if we are using motor interlock switch and it's enabled, fail to arm if (ap.using_interlock && motors.get_interlock()){ gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Interlock Enabled"); return false; } // if we are not using Emergency Stop switch option, force Estop false to ensure motors // can run normally if (!check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP)){ set_motor_emergency_stop(false); // if we are using motor Estop switch, it must not be in Estop position } else if (check_if_auxsw_mode_used(AUXSW_MOTOR_ESTOP) && ap.motor_emergency_stop){ gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Emergency Stopped"); return false; } // succeed if arming checks are disabled if (g.arming_check == ARMING_CHECK_NONE) { return true; } // baro checks if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { // baro health check if (!barometer.all_healthy()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Barometer not healthy"); } return false; } // Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. // Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height // that may differ from the baro height due to baro drift. nav_filter_status filt_status = inertial_nav.get_filter_status(); bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); if (using_baro_ref && (fabsf(inertial_nav.get_altitude() - baro_alt) > PREARM_MAX_ALT_DISPARITY_CM)) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Altitude disparity"); } return false; } } #if AC_FENCE == ENABLED // check vehicle is within fence if (!fence.pre_arm_check()) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: check fence"); } return false; } #endif // check lean angle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > aparm.angle_max) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Leaning"); } return false; } } // check battery voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if (failsafe.battery || (!ap.usb_connected && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah))) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Check Battery"); } return false; } } // check for missing terrain data if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { if (!pre_arm_terrain_check()) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Waiting for Terrain data"); return false; } } // check throttle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) { // check throttle is not too low - must be above failsafe throttle if (g.failsafe_throttle != FS_THR_DISABLED && channel_throttle->get_radio_in() < g.failsafe_throttle_value) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective below Failsafe"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle below Failsafe"); #endif } return false; } // check throttle is not too high - skips checks if arming from GCS in Guided if (!(arming_from_gcs && control_mode == GUIDED)) { // above top of deadband is too always high if (channel_throttle->get_control_in() > get_takeoff_trigger_throttle()) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective too high"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high"); #endif } return false; } // in manual modes throttle must be at zero if ((mode_has_manual_throttle(control_mode) || control_mode == DRIFT) && channel_throttle->get_control_in() > 0) { if (display_failure) { #if FRAME_CONFIG == HELI_FRAME gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Collective too high"); #else gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Throttle too high"); #endif } return false; } } } // check if safety switch has been pushed if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { if (display_failure) { gcs_send_text(MAV_SEVERITY_CRITICAL,"Arm: Safety Switch"); } return false; } // if we've gotten this far all is ok return true; }