/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * control_auto.pde - init and run calls for auto flight mode * * This file contains the implementation for Land, Waypoint navigation and Takeoff from Auto mode * Command execution code (i.e. command_logic.pde) should: * a) switch to Auto flight mode with set_mode() function. This will cause auto_init to be called * b) call one of the three auto initialisation functions: auto_wp_start(), auto_takeoff_start(), auto_land_start() * c) call one of the verify functions auto_wp_verify(), auto_takeoff_verify, auto_land_verify repeated to check if the command has completed * The main loop (i.e. fast loop) will call update_flight_modes() which will in turn call auto_run() which, based upon the auto_mode variable will call * correct auto_wp_run, auto_takeoff_run or auto_land_run to actually implement the feature */ /* * While in the auto flight mode, navigation or do/now commands can be run. * Code in this file implements the navigation commands */ // auto_init - initialise auto controller static bool auto_init(bool ignore_checks) { if ((GPS_ok() && inertial_nav.position_ok() && mission.num_commands() > 1) || ignore_checks) { auto_mode = Auto_Loiter; // stop ROI from carrying over from previous runs of the mission // To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check if (auto_yaw_mode == AUTO_YAW_ROI) { set_auto_yaw_mode(AUTO_YAW_HOLD); } // initialise waypoint and spline controller wp_nav.wp_and_spline_init(); // clear guided limits guided_limit_clear(); // start/resume the mission (based on MIS_RESTART parameter) mission.start_or_resume(); return true; }else{ return false; } } // auto_run - runs the auto controller // should be called at 100hz or more // relies on run_autopilot being called at 10hz which handles decision making and non-navigation related commands static void auto_run() { // call the correct auto controller switch (auto_mode) { case Auto_TakeOff: auto_takeoff_run(); break; case Auto_WP: case Auto_CircleMoveToEdge: auto_wp_run(); break; case Auto_Land: auto_land_run(); break; case Auto_RTL: auto_rtl_run(); break; case Auto_Circle: auto_circle_run(); break; case Auto_Spline: auto_spline_run(); break; #if NAV_GUIDED == ENABLED case Auto_NavGuided: auto_nav_guided_run(); break; #endif case Auto_Loiter: auto_loiter_run(); break; } } // auto_takeoff_start - initialises waypoint controller to implement take-off static void auto_takeoff_start(float final_alt) { auto_mode = Auto_TakeOff; // initialise wpnav destination Vector3f target_pos = inertial_nav.get_position(); target_pos.z = final_alt; wp_nav.set_wp_destination(target_pos); // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); // tell motors to do a slow start motors.slow_start(true); } // auto_takeoff_run - takeoff in auto mode // called by auto_run at 100hz or more static void auto_takeoff_run() { // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed) { // initialise wpnav targets wp_nav.shift_wp_origin_to_current_pos(); // reset attitude control targets attitude_control.relax_bf_rate_controller(); attitude_control.set_yaw_target_to_current_heading(); attitude_control.set_throttle_out(0, false); // tell motors to do a slow start motors.slow_start(true); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); } // run waypoint controller wp_nav.update_wpnav(); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination static void auto_wp_start(const Vector3f& destination) { auto_mode = Auto_WP; // initialise wpnav wp_nav.set_wp_destination(destination); // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_run - runs the auto waypoint controller // called by auto_run at 100hz or more static void auto_wp_run() { // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed) { // To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) attitude_control.relax_bf_rate_controller(); attitude_control.set_yaw_target_to_current_heading(); attitude_control.set_throttle_out(0, false); // tell motors to do a slow start motors.slow_start(true); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); if (target_yaw_rate != 0) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // run waypoint controller wp_nav.update_wpnav(); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control.angle_ef_roll_pitch_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(),true); } } // auto_spline_start - initialises waypoint controller to implement flying to a particular destination using the spline controller // seg_end_type can be SEGMENT_END_STOP, SEGMENT_END_STRAIGHT or SEGMENT_END_SPLINE. If Straight or Spline the next_destination should be provided static void auto_spline_start(const Vector3f& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Vector3f& next_destination) { auto_mode = Auto_Spline; // initialise wpnav wp_nav.set_spline_destination(destination, stopped_at_start, seg_end_type, next_destination); // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_spline_run - runs the auto spline controller // called by auto_run at 100hz or more static void auto_spline_run() { // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed) { // To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) attitude_control.relax_bf_rate_controller(); attitude_control.set_yaw_target_to_current_heading(); attitude_control.set_throttle_out(0, false); // tell motors to do a slow start motors.slow_start(true); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); if (target_yaw_rate != 0) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // run waypoint controller wp_nav.update_spline(); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control.angle_ef_roll_pitch_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), get_auto_heading(), true); } } // auto_land_start - initialises controller to implement a landing static void auto_land_start() { // set target to stopping point Vector3f stopping_point; wp_nav.get_loiter_stopping_point_xy(stopping_point); // call location specific land start function auto_land_start(stopping_point); } // auto_land_start - initialises controller to implement a landing static void auto_land_start(const Vector3f& destination) { auto_mode = Auto_Land; // initialise loiter target destination wp_nav.init_loiter_target(destination); // initialise altitude target to stopping point pos_control.set_target_to_stopping_point_z(); // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // auto_land_run - lands in auto mode // called by auto_run at 100hz or more static void auto_land_run() { int16_t roll_control = 0, pitch_control = 0; float target_yaw_rate = 0; // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed || ap.land_complete) { attitude_control.relax_bf_rate_controller(); attitude_control.set_yaw_target_to_current_heading(); attitude_control.set_throttle_out(0, false); // set target to current position wp_nav.init_loiter_target(); return; } // relax loiter targets if we might be landed if (land_complete_maybe()) { wp_nav.loiter_soften_for_landing(); } // process pilot's input if (!failsafe.radio) { if (g.land_repositioning) { // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // process pilot's roll and pitch input roll_control = g.rc_1.control_in; pitch_control = g.rc_2.control_in; } // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); } // process roll, pitch inputs wp_nav.set_pilot_desired_acceleration(roll_control, pitch_control); // run loiter controller wp_nav.update_loiter(); // call z-axis position controller pos_control.set_alt_target_from_climb_rate(get_throttle_land(), G_Dt); pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); } // auto_rtl_start - initialises RTL in AUTO flight mode static void auto_rtl_start() { auto_mode = Auto_RTL; // call regular rtl flight mode initialisation and ask it to ignore checks rtl_init(true); } // auto_rtl_run - rtl in AUTO flight mode // called by auto_run at 100hz or more void auto_rtl_run() { // call regular rtl flight mode run function rtl_run(); } // auto_circle_movetoedge_start - initialise waypoint controller to move to edge of a circle with it's center at the specified location // we assume the caller has set the circle's circle with circle_nav.set_center() // we assume the caller has performed all required GPS_ok checks static void auto_circle_movetoedge_start() { // check our distance from edge of circle Vector3f circle_edge; circle_nav.get_closest_point_on_circle(circle_edge); // set the state to move to the edge of the circle auto_mode = Auto_CircleMoveToEdge; // initialise wpnav to move to edge of circle wp_nav.set_wp_destination(circle_edge); // if we are outside the circle, point at the edge, otherwise hold yaw const Vector3f &curr_pos = inertial_nav.get_position(); const Vector3f &circle_center = circle_nav.get_center(); float dist_to_center = pythagorous2(circle_center.x - curr_pos.x, circle_center.y - curr_pos.y); if (dist_to_center > circle_nav.get_radius() && dist_to_center > 500) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } else { // vehicle is within circle so hold yaw to avoid spinning as we move to edge of circle set_auto_yaw_mode(AUTO_YAW_HOLD); } } // auto_circle_start - initialises controller to fly a circle in AUTO flight mode static void auto_circle_start() { auto_mode = Auto_Circle; // initialise circle controller // center was set in do_circle so initialise with current center circle_nav.init(circle_nav.get_center()); } // auto_circle_run - circle in AUTO flight mode // called by auto_run at 100hz or more void auto_circle_run() { // call circle controller circle_nav.update(); // call z-axis position controller pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.angle_ef_roll_pitch_yaw(circle_nav.get_roll(), circle_nav.get_pitch(), circle_nav.get_yaw(),true); } #if NAV_GUIDED == ENABLED // auto_nav_guided_start - hand over control to external navigation controller in AUTO mode void auto_nav_guided_start() { auto_mode = Auto_NavGuided; // call regular guided flight mode initialisation guided_init(true); // initialise guided start time and position as reference for limit checking guided_limit_init_time_and_pos(); } // auto_nav_guided_run - allows control by external navigation controller // called by auto_run at 100hz or more void auto_nav_guided_run() { // call regular guided flight mode run function guided_run(); } #endif // NAV_GUIDED // auto_loiter_start - initialises loitering in auto mode // returns success/failure because this can be called by exit_mission bool auto_loiter_start() { // return failure if GPS is bad if (!GPS_ok()) { return false; } auto_mode = Auto_Loiter; Vector3f origin = inertial_nav.get_position(); // calculate stopping point Vector3f stopping_point; pos_control.get_stopping_point_xy(stopping_point); pos_control.get_stopping_point_z(stopping_point); // initialise waypoint controller target to stopping point wp_nav.set_wp_origin_and_destination(origin, stopping_point); // hold yaw at current heading set_auto_yaw_mode(AUTO_YAW_HOLD); return true; } // auto_loiter_run - loiter in AUTO flight mode // called by auto_run at 100hz or more void auto_loiter_run() { // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed || ap.land_complete) { attitude_control.relax_bf_rate_controller(); attitude_control.set_yaw_target_to_current_heading(); attitude_control.set_throttle_out(0, false); return; } // accept pilot input of yaw float target_yaw_rate = 0; if(!failsafe.radio) { target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); } // run waypoint and z-axis postion controller wp_nav.update_wpnav(); pos_control.update_z_controller(); attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate); } // get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter // set rtl parameter to true if this is during an RTL uint8_t get_default_auto_yaw_mode(bool rtl) { switch (g.wp_yaw_behavior) { case WP_YAW_BEHAVIOR_NONE: return AUTO_YAW_HOLD; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL: if (rtl) { return AUTO_YAW_HOLD; }else{ return AUTO_YAW_LOOK_AT_NEXT_WP; } break; case WP_YAW_BEHAVIOR_LOOK_AHEAD: return AUTO_YAW_LOOK_AHEAD; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP: default: return AUTO_YAW_LOOK_AT_NEXT_WP; break; } } // set_auto_yaw_mode - sets the yaw mode for auto void set_auto_yaw_mode(uint8_t yaw_mode) { // return immediately if no change if (auto_yaw_mode == yaw_mode) { return; } auto_yaw_mode = yaw_mode; // perform initialisation switch (auto_yaw_mode) { case AUTO_YAW_LOOK_AT_NEXT_WP: // wpnav will initialise heading when wpnav's set_destination method is called break; case AUTO_YAW_ROI: // point towards a location held in yaw_look_at_WP yaw_look_at_WP_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading // caller should set the yaw_look_at_heading break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. yaw_look_ahead_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_RESETTOARMEDYAW: // initial_armed_bearing will be set during arming so no init required break; } } // set_auto_yaw_look_at_heading - sets the yaw look at heading for auto mode static void set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle) { // get current yaw target int32_t curr_yaw_target = attitude_control.angle_ef_targets().z; // get final angle, 1 = Relative, 0 = Absolute if (relative_angle == 0) { // absolute angle yaw_look_at_heading = wrap_360_cd(angle_deg * 100); } else { // relative angle if (direction < 0) { angle_deg = -angle_deg; } yaw_look_at_heading = wrap_360_cd((angle_deg*100+curr_yaw_target)); } // get turn speed if (turn_rate_dps == 0 ) { // default to regular auto slew rate yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE; }else{ int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - curr_yaw_target) / 100) / turn_rate_dps; yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec } // set yaw mode set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); // TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise } // set_auto_yaw_roi - sets the yaw to look at roi for auto mode static void set_auto_yaw_roi(const Location &roi_location) { // if location is zero lat, lon and altitude turn off ROI if (roi_location.alt == 0 && roi_location.lat == 0 && roi_location.lng == 0) { // set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command set_auto_yaw_mode(get_default_auto_yaw_mode(false)); #if MOUNT == ENABLED // switch off the camera tracking if enabled if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { camera_mount.set_mode_to_default(); } #endif // MOUNT == ENABLED }else{ #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if(camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll) { roi_WP = pv_location_to_vector(roi_location); set_auto_yaw_mode(AUTO_YAW_ROI); } // send the command to the camera mount camera_mount.set_roi_cmd(&roi_location); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implemented) #else // if we have no camera mount aim the quad at the location roi_WP = pv_location_to_vector(roi_location); set_auto_yaw_mode(AUTO_YAW_ROI); #endif // MOUNT == ENABLED } } // get_auto_heading - returns target heading depending upon auto_yaw_mode // 100hz update rate float get_auto_heading(void) { switch(auto_yaw_mode) { case AUTO_YAW_ROI: // point towards a location held in roi_WP return get_roi_yaw(); break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed return yaw_look_at_heading; break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. return get_look_ahead_yaw(); break; case AUTO_YAW_RESETTOARMEDYAW: // changes yaw to be same as when quad was armed return initial_armed_bearing; break; case AUTO_YAW_LOOK_AT_NEXT_WP: default: // point towards next waypoint. // we don't use wp_bearing because we don't want the copter to turn too much during flight return wp_nav.get_yaw(); break; } }