#include "GCS_Mavlink.h" #include "Plane.h" MAV_TYPE GCS_Plane::frame_type() const { return plane.quadplane.get_mav_type(); } MAV_MODE GCS_MAVLINK_Plane::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (plane.control_mode->mode_number()) { case Mode::Number::MANUAL: case Mode::Number::TRAINING: case Mode::Number::ACRO: case Mode::Number::QACRO: _base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; break; case Mode::Number::STABILIZE: case Mode::Number::FLY_BY_WIRE_A: case Mode::Number::AUTOTUNE: case Mode::Number::FLY_BY_WIRE_B: case Mode::Number::QSTABILIZE: case Mode::Number::QHOVER: case Mode::Number::QLOITER: case Mode::Number::QLAND: case Mode::Number::CRUISE: case Mode::Number::QAUTOTUNE: _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; break; case Mode::Number::AUTO: case Mode::Number::RTL: case Mode::Number::LOITER: case Mode::Number::AVOID_ADSB: case Mode::Number::GUIDED: case Mode::Number::CIRCLE: case Mode::Number::TAKEOFF: case Mode::Number::QRTL: _base_mode = MAV_MODE_FLAG_GUIDED_ENABLED | MAV_MODE_FLAG_STABILIZE_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; case Mode::Number::INITIALISING: break; } if (!plane.training_manual_pitch || !plane.training_manual_roll) { _base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (plane.control_mode != &plane.mode_manual && plane.control_mode != &plane.mode_initializing) { // stabiliser of some form is enabled _base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED; } if (plane.g.stick_mixing != STICK_MIXING_DISABLED && plane.control_mode != &plane.mode_initializing) { // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; } #if HIL_SUPPORT if (plane.g.hil_mode == 1) { _base_mode |= MAV_MODE_FLAG_HIL_ENABLED; } #endif // we are armed if we are not initialising if (plane.control_mode != &plane.mode_initializing && plane.arming.is_armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_Plane::custom_mode() const { return plane.control_mode->mode_number(); } MAV_STATE GCS_MAVLINK_Plane::vehicle_system_status() const { if (plane.control_mode == &plane.mode_initializing) { return MAV_STATE_CALIBRATING; } if (plane.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (plane.crash_state.is_crashed) { return MAV_STATE_EMERGENCY; } if (plane.is_flying()) { return MAV_STATE_ACTIVE; } return MAV_STATE_STANDBY; } void GCS_MAVLINK_Plane::send_attitude() const { const AP_AHRS &ahrs = AP::ahrs(); float r = ahrs.roll; float p = ahrs.pitch - radians(plane.g.pitch_trim_cd*0.01f); float y = ahrs.yaw; if (plane.quadplane.in_vtol_mode()) { r = plane.quadplane.ahrs_view->roll; p = plane.quadplane.ahrs_view->pitch; y = plane.quadplane.ahrs_view->yaw; } const Vector3f &omega = ahrs.get_gyro(); mavlink_msg_attitude_send( chan, millis(), r, p, y, omega.x, omega.y, omega.z); } void Plane::send_aoa_ssa(mavlink_channel_t chan) { mavlink_msg_aoa_ssa_send( chan, micros(), ahrs.getAOA(), ahrs.getSSA()); } #if GEOFENCE_ENABLED == ENABLED void Plane::send_fence_status(mavlink_channel_t chan) { geofence_send_status(chan); } #endif void GCS_MAVLINK_Plane::send_nav_controller_output() const { if (plane.control_mode == &plane.mode_manual) { return; } const QuadPlane &quadplane = plane.quadplane; if (quadplane.in_vtol_mode()) { const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd(); bool wp_nav_valid = quadplane.using_wp_nav(); mavlink_msg_nav_controller_output_send( chan, targets.x * 1.0e-2f, targets.y * 1.0e-2f, targets.z * 1.0e-2f, wp_nav_valid ? quadplane.wp_nav->get_wp_bearing_to_destination() : 0, wp_nav_valid ? MIN(quadplane.wp_nav->get_wp_distance_to_destination(), UINT16_MAX) : 0, (plane.control_mode != &plane.mode_qstabilize) ? quadplane.pos_control->get_alt_error() * 1.0e-2f : 0, plane.airspeed_error * 100, wp_nav_valid ? quadplane.wp_nav->crosstrack_error() : 0); } else { const AP_Navigation *nav_controller = plane.nav_controller; mavlink_msg_nav_controller_output_send( chan, plane.nav_roll_cd * 0.01f, plane.nav_pitch_cd * 0.01f, nav_controller->nav_bearing_cd() * 0.01f, nav_controller->target_bearing_cd() * 0.01f, MIN(plane.auto_state.wp_distance, UINT16_MAX), plane.altitude_error_cm * 0.01f, plane.airspeed_error * 100, nav_controller->crosstrack_error()); } } void GCS_MAVLINK_Plane::send_position_target_global_int() { if (plane.control_mode == &plane.mode_manual) { return; } Location &next_WP_loc = plane.next_WP_loc; mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL, // targets are always global altitude 0xFFF8, // ignore everything except the x/y/z components next_WP_loc.lat, // latitude as 1e7 next_WP_loc.lng, // longitude as 1e7 next_WP_loc.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } void Plane::send_servo_out(mavlink_channel_t chan) { // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with // HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_aileron) / 4500.0f), 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) / 4500.0f), 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) / 100.0f), 10000 * (SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / 4500.0f), 0, 0, 0, 0, rssi.read_receiver_rssi_uint8()); } float GCS_MAVLINK_Plane::vfr_hud_airspeed() const { // airspeed sensors are best. While the AHRS airspeed_estimate // will use an airspeed sensor, that value is constrained by the // ground speed. When reporting we should send the true airspeed // value if possible: if (plane.airspeed.enabled() && plane.airspeed.healthy()) { return plane.airspeed.get_airspeed(); } // airspeed estimates are OK: float aspeed; if (AP::ahrs().airspeed_estimate(&aspeed)) { return aspeed; } // lying is worst: return 0; } int16_t GCS_MAVLINK_Plane::vfr_hud_throttle() const { return plane.throttle_percentage(); } float GCS_MAVLINK_Plane::vfr_hud_climbrate() const { #if SOARING_ENABLED == ENABLED if (plane.g2.soaring_controller.is_active()) { return plane.g2.soaring_controller.get_vario_reading(); } #endif return AP::baro().get_climb_rate(); } /* keep last HIL_STATE message to allow sending SIM_STATE */ #if HIL_SUPPORT static mavlink_hil_state_t last_hil_state; #endif // report simulator state void GCS_MAVLINK_Plane::send_simstate() const { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL GCS_MAVLINK::send_simstate(); #elif HIL_SUPPORT if (plane.g.hil_mode == 1) { mavlink_msg_simstate_send(chan, last_hil_state.roll, last_hil_state.pitch, last_hil_state.yaw, last_hil_state.xacc*0.001f*GRAVITY_MSS, last_hil_state.yacc*0.001f*GRAVITY_MSS, last_hil_state.zacc*0.001f*GRAVITY_MSS, last_hil_state.rollspeed, last_hil_state.pitchspeed, last_hil_state.yawspeed, last_hil_state.lat, last_hil_state.lon); } #endif } void Plane::send_wind(mavlink_channel_t chan) { Vector3f wind = ahrs.wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), // use negative, to give // direction wind is coming from wind.length(), wind.z); } // sends a single pid info over the provided channel void GCS_MAVLINK_Plane::send_pid_info(const AP_Logger::PID_Info *pid_info, const uint8_t axis, const float achieved) { if (pid_info == nullptr) { return; } if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } mavlink_msg_pid_tuning_send(chan, axis, pid_info->target, achieved, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); } /* send PID tuning message */ void GCS_MAVLINK_Plane::send_pid_tuning() { if (plane.control_mode == &plane.mode_manual) { // no PIDs should be used in manual return; } const Parameters &g = plane.g; AP_AHRS &ahrs = AP::ahrs(); const Vector3f &gyro = ahrs.get_gyro(); const AP_Logger::PID_Info *pid_info; if (g.gcs_pid_mask & TUNING_BITS_ROLL) { if (plane.quadplane.in_vtol_mode()) { pid_info = &plane.quadplane.attitude_control->get_rate_roll_pid().get_pid_info(); } else { pid_info = &plane.rollController.get_pid_info(); } send_pid_info(pid_info, PID_TUNING_ROLL, degrees(gyro.x)); } if (g.gcs_pid_mask & TUNING_BITS_PITCH) { if (plane.quadplane.in_vtol_mode()) { pid_info = &plane.quadplane.attitude_control->get_rate_pitch_pid().get_pid_info(); } else { pid_info = &plane.pitchController.get_pid_info(); } send_pid_info(pid_info, PID_TUNING_PITCH, degrees(gyro.y)); } if (g.gcs_pid_mask & TUNING_BITS_YAW) { if (plane.quadplane.in_vtol_mode()) { pid_info = &plane.quadplane.attitude_control->get_rate_yaw_pid().get_pid_info(); } else { pid_info = &plane.yawController.get_pid_info(); } send_pid_info(pid_info, PID_TUNING_YAW, degrees(gyro.z)); } if (g.gcs_pid_mask & TUNING_BITS_STEER) { send_pid_info(&plane.steerController.get_pid_info(), PID_TUNING_STEER, degrees(gyro.z)); } if ((g.gcs_pid_mask & TUNING_BITS_LAND) && (plane.flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND)) { send_pid_info(plane.landing.get_pid_info(), PID_TUNING_LANDING, degrees(gyro.z)); } if (g.gcs_pid_mask & TUNING_BITS_ACCZ && plane.quadplane.in_vtol_mode()) { const Vector3f &accel = ahrs.get_accel_ef(); pid_info = &plane.quadplane.pos_control->get_accel_z_pid().get_pid_info(); send_pid_info(pid_info, PID_TUNING_ACCZ, -accel.z); } } uint8_t GCS_MAVLINK_Plane::sysid_my_gcs() const { return plane.g.sysid_my_gcs; } bool GCS_MAVLINK_Plane::sysid_enforce() const { return plane.g2.sysid_enforce; } uint32_t GCS_MAVLINK_Plane::telem_delay() const { return (uint32_t)(plane.g.telem_delay); } // try to send a message, return false if it won't fit in the serial tx buffer bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id) { switch (id) { case MSG_SERVO_OUT: #if HIL_SUPPORT if (plane.g.hil_mode == 1) { CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); plane.send_servo_out(chan); } #endif break; case MSG_FENCE_STATUS: #if GEOFENCE_ENABLED == ENABLED CHECK_PAYLOAD_SIZE(FENCE_STATUS); plane.send_fence_status(chan); #endif break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); plane.terrain.send_request(chan); #endif break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); plane.send_wind(chan); break; case MSG_ADSB_VEHICLE: CHECK_PAYLOAD_SIZE(ADSB_VEHICLE); plane.adsb.send_adsb_vehicle(chan); break; case MSG_AOA_SSA: CHECK_PAYLOAD_SIZE(AOA_SSA); plane.send_aoa_ssa(chan); break; case MSG_LANDING: plane.landing.send_landing_message(chan); break; default: return GCS_MAVLINK::try_send_message(id); } return true; } /* default stream rates to 1Hz */ const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 1), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 1), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 1), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 1), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 1), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 1), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 1), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 1), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 10), // @Param: ADSB // @DisplayName: ADSB stream rate to ground station // @Description: ADSB stream rate to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @User: Advanced AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 5), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, MSG_SENSOR_OFFSETS }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_SYS_STATUS, MSG_POWER_STATUS, MSG_MEMINFO, MSG_CURRENT_WAYPOINT, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, MSG_POSITION_TARGET_GLOBAL_INT, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RAW_CONTROLLER_msgs[] = { MSG_SERVO_OUT, }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RC_CHANNELS, MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, MSG_AHRS2, MSG_AHRS3, MSG_RPM, MSG_AOA_SSA, MSG_PID_TUNING, MSG_LANDING, MSG_ESC_TELEMETRY, MSG_EFI_STATUS, }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_WIND, MSG_RANGEFINDER, MSG_DISTANCE_SENSOR, MSG_SYSTEM_TIME, #if AP_TERRAIN_AVAILABLE MSG_TERRAIN, #endif MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, }; static const ap_message STREAM_PARAMS_msgs[] = { MSG_NEXT_PARAM }; static const ap_message STREAM_ADSB_msgs[] = { MSG_ADSB_VEHICLE }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_PARAMS), MAV_STREAM_ENTRY(STREAM_ADSB), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Plane::in_hil_mode() const { #if HIL_SUPPORT return plane.g.hil_mode == 1; #endif return false; } /* handle a request to switch to guided mode. This happens via a callback from handle_mission_item() */ bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd) { if (plane.control_mode != &plane.mode_guided) { // only accept position updates when in GUIDED mode return false; } plane.guided_WP_loc = cmd.content.location; // add home alt if needed if (plane.guided_WP_loc.relative_alt) { plane.guided_WP_loc.alt += plane.home.alt; plane.guided_WP_loc.relative_alt = 0; } plane.set_guided_WP(); return true; } /* handle a request to change current WP altitude. This happens via a callback from handle_mission_item() */ void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { plane.next_WP_loc.alt = cmd.content.location.alt; if (cmd.content.location.relative_alt) { plane.next_WP_loc.alt += plane.home.alt; } plane.next_WP_loc.relative_alt = false; plane.next_WP_loc.terrain_alt = cmd.content.location.terrain_alt; plane.reset_offset_altitude(); } MAV_RESULT GCS_MAVLINK_Plane::handle_command_preflight_calibration(const mavlink_command_long_t &packet) { plane.in_calibration = true; MAV_RESULT ret = GCS_MAVLINK::handle_command_preflight_calibration(packet); plane.in_calibration = false; return ret; } MAV_RESULT GCS_MAVLINK_Plane::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param4,1.0f)) { if (plane.trim_radio()) { return MAV_RESULT_ACCEPTED; } else { return MAV_RESULT_FAILED; } } return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } void GCS_MAVLINK_Plane::packetReceived(const mavlink_status_t &status, const mavlink_message_t &msg) { plane.avoidance_adsb.handle_msg(msg); GCS_MAVLINK::packetReceived(status, msg); } bool GCS_MAVLINK_Plane::set_home_to_current_location(bool _lock) { if (!plane.set_home_persistently(AP::gps().location())) { return false; } if (_lock) { AP::ahrs().lock_home(); } return true; } bool GCS_MAVLINK_Plane::set_home(const Location& loc, bool _lock) { if (!AP::ahrs().set_home(loc)) { return false; } if (_lock) { AP::ahrs().lock_home(); } return true; } MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_do_reposition(const mavlink_command_int_t &packet) { // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_FAILED; } Location requested_position {}; requested_position.lat = packet.x; requested_position.lng = packet.y; // check the floating representation for overflow of altitude if (fabsf(packet.z * 100.0f) >= 0x7fffff) { return MAV_RESULT_FAILED; } requested_position.alt = (int32_t)(packet.z * 100.0f); // load option flags if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { requested_position.relative_alt = 1; } else if (packet.frame == MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) { requested_position.terrain_alt = 1; } else if (packet.frame != MAV_FRAME_GLOBAL_INT && packet.frame != MAV_FRAME_GLOBAL) { // not a supported frame return MAV_RESULT_FAILED; } if (is_zero(packet.param4)) { requested_position.loiter_ccw = 0; } else { requested_position.loiter_ccw = 1; } if (requested_position.sanitize(plane.current_loc)) { // if the location wasn't already sane don't load it return MAV_RESULT_FAILED; // failed as the location is not valid } // location is valid load and set if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) || (plane.control_mode == &plane.mode_guided)) { plane.set_mode(plane.mode_guided, ModeReason::GCS_COMMAND); plane.guided_WP_loc = requested_position; // add home alt if needed if (plane.guided_WP_loc.relative_alt) { plane.guided_WP_loc.alt += plane.home.alt; plane.guided_WP_loc.relative_alt = 0; } plane.set_guided_WP(); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_packet(const mavlink_command_int_t &packet) { switch(packet.command) { case MAV_CMD_DO_REPOSITION: return handle_command_int_do_reposition(packet); default: return GCS_MAVLINK::handle_command_int_packet(packet); } } MAV_RESULT GCS_MAVLINK_Plane::handle_command_long_packet(const mavlink_command_long_t &packet) { switch(packet.command) { case MAV_CMD_DO_CHANGE_SPEED: { // if we're in failsafe modes (e.g., RTL, LOITER) or in pilot // controlled modes (e.g., MANUAL, TRAINING) // this command should be ignored since it comes in from GCS // or a companion computer: if ((plane.control_mode != &plane.mode_guided) && (plane.control_mode != &plane.mode_auto) && (plane.control_mode != &plane.mode_avoidADSB)) { // failed return MAV_RESULT_FAILED; } AP_Mission::Mission_Command cmd; if (AP_Mission::mavlink_cmd_long_to_mission_cmd(packet, cmd) == MAV_MISSION_ACCEPTED) { plane.do_change_speed(cmd); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } case MAV_CMD_NAV_LOITER_UNLIM: plane.set_mode(plane.mode_loiter, ModeReason::GCS_COMMAND); return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_RETURN_TO_LAUNCH: plane.set_mode(plane.mode_rtl, ModeReason::GCS_COMMAND); return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_TAKEOFF: { // user takeoff only works with quadplane code for now // param7 : altitude [metres] float takeoff_alt = packet.param7; if (plane.quadplane.available() && plane.quadplane.do_user_takeoff(takeoff_alt)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } case MAV_CMD_MISSION_START: plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND); return MAV_RESULT_ACCEPTED; case MAV_CMD_DO_LAND_START: // attempt to switch to next DO_LAND_START command in the mission if (plane.mission.jump_to_landing_sequence()) { plane.set_mode(plane.mode_auto, ModeReason::UNKNOWN); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_DO_GO_AROUND: { uint16_t mission_id = plane.mission.get_current_nav_cmd().id; bool is_in_landing = (plane.flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) || (mission_id == MAV_CMD_NAV_LAND) || (mission_id == MAV_CMD_NAV_VTOL_LAND); if (is_in_landing) { // fly a user planned abort pattern if available if (plane.mission.jump_to_abort_landing_sequence()) { return MAV_RESULT_ACCEPTED; } // only fly a fixed wing abort if we aren't doing quadplane stuff, or potentially // shooting a quadplane approach if ((!plane.quadplane.available()) || ((!plane.quadplane.in_vtol_auto()) && (!(plane.quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH)))) { // Initiate an aborted landing. This will trigger a pitch-up and // climb-out to a safe altitude holding heading then one of the // following actions will occur, check for in this order: // - If MAV_CMD_CONTINUE_AND_CHANGE_ALT is next command in mission, // increment mission index to execute it // - else if DO_LAND_START is available, jump to it // - else decrement the mission index to repeat the landing approach if (!is_zero(packet.param1)) { plane.auto_state.takeoff_altitude_rel_cm = packet.param1 * 100; } if (plane.landing.request_go_around()) { plane.auto_state.next_wp_crosstrack = false; return MAV_RESULT_ACCEPTED; } } } } return MAV_RESULT_FAILED; case MAV_CMD_DO_FENCE_ENABLE: if (!plane.geofence_present()) { gcs().send_text(MAV_SEVERITY_NOTICE,"Fence not configured"); return MAV_RESULT_FAILED; } switch((uint16_t)packet.param1) { case 0: if (! plane.geofence_set_enabled(false)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case 1: if (! plane.geofence_set_enabled(true)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case 2: //disable fence floor only if (! plane.geofence_set_floor_enabled(false)) { return MAV_RESULT_FAILED; } gcs().send_text(MAV_SEVERITY_NOTICE,"Fence floor disabled"); return MAV_RESULT_ACCEPTED; default: break; } return MAV_RESULT_FAILED; case MAV_CMD_DO_SET_HOME: { // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude (absolute) if (is_equal(packet.param1,1.0f)) { if (!plane.set_home_persistently(AP::gps().location())) { return MAV_RESULT_FAILED; } AP::ahrs().lock_home(); return MAV_RESULT_ACCEPTED; } else { // ensure param1 is zero if (!is_zero(packet.param1)) { return MAV_RESULT_FAILED; } Location new_home_loc {}; new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f); new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f); new_home_loc.alt = (int32_t)(packet.param7 * 100.0f); if (!set_home(new_home_loc, true)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } break; } case MAV_CMD_DO_AUTOTUNE_ENABLE: // param1 : enable/disable plane.autotune_enable(!is_zero(packet.param1)); return MAV_RESULT_ACCEPTED; #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: // configure or release parachute switch ((uint16_t)packet.param1) { case PARACHUTE_DISABLE: plane.parachute.enabled(false); return MAV_RESULT_ACCEPTED; case PARACHUTE_ENABLE: plane.parachute.enabled(true); return MAV_RESULT_ACCEPTED; case PARACHUTE_RELEASE: // treat as a manual release which performs some additional check of altitude if (plane.parachute.released()) { gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute already released"); return MAV_RESULT_FAILED; } if (!plane.parachute.enabled()) { gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute not enabled"); return MAV_RESULT_FAILED; } if (!plane.parachute_manual_release()) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; default: break; } return MAV_RESULT_FAILED; #endif case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) // param5 : motor count (number of motors to test in sequence) return plane.quadplane.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4, (uint8_t)packet.param5); case MAV_CMD_DO_VTOL_TRANSITION: if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_DO_ENGINE_CONTROL: if (!plane.g2.ice_control.engine_control(packet.param1, packet.param2, packet.param3)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; default: return GCS_MAVLINK::handle_command_long_packet(packet); } } void GCS_MAVLINK_Plane::handleMessage(const mavlink_message_t &msg) { switch (msg.msgid) { #if GEOFENCE_ENABLED == ENABLED // receive a fence point from GCS and store in EEPROM case MAVLINK_MSG_ID_FENCE_POINT: { mavlink_fence_point_t packet; mavlink_msg_fence_point_decode(&msg, &packet); if (plane.g.fence_action != FENCE_ACTION_NONE) { send_text(MAV_SEVERITY_WARNING,"Fencing must be disabled"); } else if (packet.count != plane.g.fence_total) { send_text(MAV_SEVERITY_WARNING,"Bad fence point"); } else if (!check_latlng(packet.lat,packet.lng)) { send_text(MAV_SEVERITY_WARNING,"Invalid fence point, lat or lng too large"); } else { plane.set_fence_point_with_index(Vector2l(packet.lat*1.0e7f, packet.lng*1.0e7f), packet.idx); } break; } // send a fence point to GCS case MAVLINK_MSG_ID_FENCE_FETCH_POINT: { mavlink_fence_fetch_point_t packet; mavlink_msg_fence_fetch_point_decode(&msg, &packet); if (packet.idx >= plane.g.fence_total) { send_text(MAV_SEVERITY_WARNING,"Bad fence point"); } else { Vector2l point = plane.get_fence_point_with_index(packet.idx); mavlink_msg_fence_point_send(chan, msg.sysid, msg.compid, packet.idx, plane.g.fence_total, point.x*1.0e-7f, point.y*1.0e-7f); } break; } #endif // GEOFENCE_ENABLED case MAVLINK_MSG_ID_MANUAL_CONTROL: { if (msg.sysid != plane.g.sysid_my_gcs) { break; // only accept control from our gcs } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(&msg, &packet); if (packet.target != plane.g.sysid_this_mav) { break; // only accept messages aimed at us } uint32_t tnow = AP_HAL::millis(); manual_override(plane.channel_roll, packet.y, 1000, 2000, tnow); manual_override(plane.channel_pitch, packet.x, 1000, 2000, tnow, true); manual_override(plane.channel_throttle, packet.z, 0, 1000, tnow); manual_override(plane.channel_rudder, packet.r, 1000, 2000, tnow); // a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes plane.failsafe.last_heartbeat_ms = tnow; break; } case MAVLINK_MSG_ID_HEARTBEAT: { // We keep track of the last time we received a heartbeat from // our GCS for failsafe purposes if (msg.sysid != plane.g.sysid_my_gcs) break; plane.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_HIL_STATE: { #if HIL_SUPPORT if (plane.g.hil_mode != 1) { break; } mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(&msg, &packet); // sanity check location if (!check_latlng(packet.lat, packet.lon)) { break; } last_hil_state = packet; // set gps hil sensor const Location loc{packet.lat, packet.lon, packet.alt/10, Location::AltFrame::ABSOLUTE}; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; // setup airspeed pressure based on 3D speed, no wind plane.airspeed.setHIL(sq(vel.length()) / 2.0f + 2013); plane.gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * GRAVITY_MSS*0.001f; accels.y = packet.yacc * GRAVITY_MSS*0.001f; accels.z = packet.zacc * GRAVITY_MSS*0.001f; plane.ins.set_gyro(0, gyros); plane.ins.set_accel(0, accels); plane.barometer.setHIL(packet.alt*0.001f); plane.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); plane.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); // cope with DCM getting badly off due to HIL lag if (plane.g.hil_err_limit > 0 && (fabsf(packet.roll - plane.ahrs.roll) > ToRad(plane.g.hil_err_limit) || fabsf(packet.pitch - plane.ahrs.pitch) > ToRad(plane.g.hil_err_limit) || wrap_PI(fabsf(packet.yaw - plane.ahrs.yaw)) > ToRad(plane.g.hil_err_limit))) { plane.ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw); } #endif break; } case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { handle_radio_status(msg, plane.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE plane.terrain.handle_data(chan, msg); #endif break; case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: { // Only allow companion computer (or other external controller) to // control attitude in GUIDED mode. We DON'T want external control // in e.g., RTL, CICLE. Specifying a single mode for companion // computer control is more safe (even more so when using // FENCE_ACTION = 4 for geofence failures). if ((plane.control_mode != &plane.mode_guided) && (plane.control_mode != &plane.mode_avoidADSB)) { // don't screw up failsafes break; } mavlink_set_attitude_target_t att_target; mavlink_msg_set_attitude_target_decode(&msg, &att_target); // Mappings: If any of these bits are set, the corresponding input should be ignored. // NOTE, when parsing the bits we invert them for easier interpretation but transport has them inverted // bit 1: body roll rate // bit 2: body pitch rate // bit 3: body yaw rate // bit 4: unknown // bit 5: unknown // bit 6: reserved // bit 7: throttle // bit 8: attitude // if not setting all Quaternion values, use _rate flags to indicate which fields. // Extract the Euler roll angle from the Quaternion. Quaternion q(att_target.q[0], att_target.q[1], att_target.q[2], att_target.q[3]); // NOTE: att_target.type_mask is inverted for easier interpretation att_target.type_mask = att_target.type_mask ^ 0xFF; uint8_t attitude_mask = att_target.type_mask & 0b10000111; // q plus rpy uint32_t now = AP_HAL::millis(); if ((attitude_mask & 0b10000001) || // partial, including roll (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.x = degrees(q.get_euler_roll()) * 100.0f; // Update timer for external roll to the nav control plane.guided_state.last_forced_rpy_ms.x = now; } if ((attitude_mask & 0b10000010) || // partial, including pitch (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.y = degrees(q.get_euler_pitch()) * 100.0f; // Update timer for external pitch to the nav control plane.guided_state.last_forced_rpy_ms.y = now; } if ((attitude_mask & 0b10000100) || // partial, including yaw (attitude_mask == 0b10000000)) { // all angles plane.guided_state.forced_rpy_cd.z = degrees(q.get_euler_yaw()) * 100.0f; // Update timer for external yaw to the nav control plane.guided_state.last_forced_rpy_ms.z = now; } if (att_target.type_mask & 0b01000000) { // throttle plane.guided_state.forced_throttle = att_target.thrust * 100.0f; // Update timer for external throttle plane.guided_state.last_forced_throttle_ms = now; } break; } case MAVLINK_MSG_ID_SET_HOME_POSITION: { mavlink_set_home_position_t packet; mavlink_msg_set_home_position_decode(&msg, &packet); Location new_home_loc {}; new_home_loc.lat = packet.latitude; new_home_loc.lng = packet.longitude; new_home_loc.alt = packet.altitude / 10; if (!set_home(new_home_loc, false)) { // silently fails... break; } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(&msg, &packet); // exit if vehicle is not in Guided mode if (plane.control_mode != &plane.mode_guided) { break; } // only local moves for now if (packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED) { break; } // just do altitude for now plane.next_WP_loc.alt += -packet.z*100.0; gcs().send_text(MAV_SEVERITY_INFO, "Change alt to %.1f", (double)((plane.next_WP_loc.alt - plane.home.alt)*0.01)); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: { // Only want to allow companion computer position control when // in a certain mode to avoid inadvertently sending these // kinds of commands when the autopilot is responding to problems // in modes such as RTL, CIRCLE, etc. Specifying ONLY one mode // for companion computer control is more safe (provided // one uses the FENCE_ACTION = 4 (RTL) for geofence failures). if (plane.control_mode != &plane.mode_guided && plane.control_mode != &plane.mode_avoidADSB) { //don't screw up failsafes break; } mavlink_set_position_target_global_int_t pos_target; mavlink_msg_set_position_target_global_int_decode(&msg, &pos_target); // Unexpectedly, the mask is expecting "ones" for dimensions that should // be IGNORNED rather than INCLUDED. See mavlink documentation of the // SET_POSITION_TARGET_GLOBAL_INT message, type_mask field. const uint16_t alt_mask = 0b1111111111111011; // (z mask at bit 3) bool msg_valid = true; AP_Mission::Mission_Command cmd = {0}; if (pos_target.type_mask & alt_mask) { cmd.content.location.alt = pos_target.alt * 100; cmd.content.location.relative_alt = false; cmd.content.location.terrain_alt = false; switch (pos_target.coordinate_frame) { case MAV_FRAME_GLOBAL: case MAV_FRAME_GLOBAL_INT: break; //default to MSL altitude case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: cmd.content.location.relative_alt = true; break; case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: cmd.content.location.relative_alt = true; cmd.content.location.terrain_alt = true; break; default: gcs().send_text(MAV_SEVERITY_WARNING, "Invalid coord frame in SET_POSTION_TARGET_GLOBAL_INT"); msg_valid = false; break; } if (msg_valid) { handle_change_alt_request(cmd); } } // end if alt_mask break; } case MAVLINK_MSG_ID_ADSB_VEHICLE: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC: case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT: plane.adsb.handle_message(chan, msg); break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink // a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes void GCS_MAVLINK_Plane::handle_rc_channels_override(const mavlink_message_t &msg) { plane.failsafe.last_heartbeat_ms = AP_HAL::millis(); GCS_MAVLINK::handle_rc_channels_override(msg); } /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Plane::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; logger.EnableWrites(false); uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs().send_message(MSG_HEARTBEAT); gcs().send_message(MSG_SYS_STATUS); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs().update_receive(); gcs().update_send(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM"); } logger.EnableWrites(true); } void GCS_MAVLINK_Plane::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg) { plane.auto_state.next_wp_crosstrack = false; GCS_MAVLINK::handle_mission_set_current(mission, msg); if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) { plane.mission.resume(); } } uint64_t GCS_MAVLINK_Plane::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_COMMAND_INT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | #if AP_TERRAIN_AVAILABLE (plane.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) | #endif GCS_MAVLINK::capabilities()); }