#include "Copter.h" #include "GCS_Mavlink.h" MAV_TYPE GCS_Copter::frame_type() const { if (copter.motors == nullptr) { return MAV_TYPE_GENERIC; } return copter.motors->get_frame_mav_type(); } MAV_MODE GCS_MAVLINK_Copter::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (copter.flightmode->mode_number()) { case Mode::Number::AUTO: case Mode::Number::AUTO_RTL: case Mode::Number::RTL: case Mode::Number::LOITER: case Mode::Number::AVOID_ADSB: case Mode::Number::FOLLOW: case Mode::Number::GUIDED: case Mode::Number::CIRCLE: case Mode::Number::POSHOLD: case Mode::Number::BRAKE: case Mode::Number::SMART_RTL: _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; default: break; } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; // we are armed if we are not initialising if (copter.motors != nullptr && copter.motors->armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_Copter::custom_mode() const { return (uint32_t)copter.flightmode->mode_number(); } MAV_STATE GCS_MAVLINK_Copter::vehicle_system_status() const { // set system as critical if any failsafe have triggered if (copter.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (copter.ap.land_complete) { return MAV_STATE_STANDBY; } return MAV_STATE_ACTIVE; } void GCS_MAVLINK_Copter::send_attitude_target() { const Quaternion quat = copter.attitude_control->get_attitude_target_quat(); const Vector3f ang_vel = copter.attitude_control->get_attitude_target_ang_vel(); const float thrust = copter.attitude_control->get_throttle_in(); const float quat_out[4] {quat.q1, quat.q2, quat.q3, quat.q4}; // Note: When sending out the attitude_target info. we send out all of info. no matter the mavlink typemask // This way we send out the maximum information that can be used by the sending control systems to adapt their generated trajectories const uint16_t typemask = 0; // Ignore nothing mavlink_msg_attitude_target_send( chan, AP_HAL::millis(), // time since boot (ms) typemask, // Bitmask that tells the system what control dimensions should be ignored by the vehicle quat_out, // Attitude quaternion [w, x, y, z] order, zero-rotation is [1, 0, 0, 0], unit-length ang_vel.x, // roll rate (rad/s) ang_vel.y, // pitch rate (rad/s) ang_vel.z, // yaw rate (rad/s) thrust); // Collective thrust, normalized to 0 .. 1 } void GCS_MAVLINK_Copter::send_position_target_global_int() { Location target; if (!copter.flightmode->get_wp(target)) { return; } // convert altitude frame to AMSL (this may use the terrain database) if (!target.change_alt_frame(Location::AltFrame::ABSOLUTE)) { return; } static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000; static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE; mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL, // targets are always global altitude TYPE_MASK, // ignore everything except the x/y/z components target.lat, // latitude as 1e7 target.lng, // longitude as 1e7 target.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } void GCS_MAVLINK_Copter::send_position_target_local_ned() { #if MODE_GUIDED_ENABLED == ENABLED if (!copter.flightmode->in_guided_mode()) { return; } const ModeGuided::SubMode guided_mode = copter.mode_guided.submode(); Vector3f target_pos; Vector3f target_vel; Vector3f target_accel; uint16_t type_mask = 0; switch (guided_mode) { case ModeGuided::SubMode::Angle: // we don't have a local target when in angle mode return; case ModeGuided::SubMode::TakeOff: case ModeGuided::SubMode::WP: case ModeGuided::SubMode::Pos: type_mask = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except position target_pos = copter.mode_guided.get_target_pos().tofloat() * 0.01; // convert to metres break; case ModeGuided::SubMode::PosVelAccel: type_mask = POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except position, velocity & acceleration target_pos = copter.mode_guided.get_target_pos().tofloat() * 0.01; // convert to metres target_vel = copter.mode_guided.get_target_vel() * 0.01f; // convert to metres/s target_accel = copter.mode_guided.get_target_accel() * 0.01f; // convert to metres/s/s break; case ModeGuided::SubMode::VelAccel: type_mask = POSITION_TARGET_TYPEMASK_X_IGNORE | POSITION_TARGET_TYPEMASK_Y_IGNORE | POSITION_TARGET_TYPEMASK_Z_IGNORE | POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except velocity & acceleration target_vel = copter.mode_guided.get_target_vel() * 0.01f; // convert to metres/s target_accel = copter.mode_guided.get_target_accel() * 0.01f; // convert to metres/s/s break; case ModeGuided::SubMode::Accel: type_mask = POSITION_TARGET_TYPEMASK_X_IGNORE | POSITION_TARGET_TYPEMASK_Y_IGNORE | POSITION_TARGET_TYPEMASK_Z_IGNORE | POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | POSITION_TARGET_TYPEMASK_YAW_IGNORE| POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; // ignore everything except velocity & acceleration target_accel = copter.mode_guided.get_target_accel() * 0.01f; // convert to metres/s/s break; } mavlink_msg_position_target_local_ned_send( chan, AP_HAL::millis(), // time boot ms MAV_FRAME_LOCAL_NED, type_mask, target_pos.x, // x in metres target_pos.y, // y in metres -target_pos.z, // z in metres NED frame target_vel.x, // vx in m/s target_vel.y, // vy in m/s -target_vel.z, // vz in m/s NED frame target_accel.x, // afx in m/s/s target_accel.y, // afy in m/s/s -target_accel.z,// afz in m/s/s NED frame 0.0f, // yaw 0.0f); // yaw_rate #endif } void GCS_MAVLINK_Copter::send_nav_controller_output() const { if (!copter.ap.initialised) { return; } const Vector3f &targets = copter.attitude_control->get_att_target_euler_cd(); const Mode *flightmode = copter.flightmode; mavlink_msg_nav_controller_output_send( chan, targets.x * 1.0e-2f, targets.y * 1.0e-2f, targets.z * 1.0e-2f, flightmode->wp_bearing() * 1.0e-2f, MIN(flightmode->wp_distance() * 1.0e-2f, UINT16_MAX), copter.pos_control->get_pos_error_z_cm() * 1.0e-2f, 0, flightmode->crosstrack_error() * 1.0e-2f); } float GCS_MAVLINK_Copter::vfr_hud_airspeed() const { #if AP_AIRSPEED_ENABLED // airspeed sensors are best. While the AHRS airspeed_estimate // will use an airspeed sensor, that value is constrained by the // ground speed. When reporting we should send the true airspeed // value if possible: if (copter.airspeed.enabled() && copter.airspeed.healthy()) { return copter.airspeed.get_airspeed(); } #endif Vector3f airspeed_vec_bf; if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // we are running the EKF3 wind estimation code which can give // us an airspeed estimate return airspeed_vec_bf.length(); } return AP::gps().ground_speed(); } int16_t GCS_MAVLINK_Copter::vfr_hud_throttle() const { if (copter.motors == nullptr) { return 0; } return (int16_t)(copter.motors->get_throttle() * 100); } /* send PID tuning message */ void GCS_MAVLINK_Copter::send_pid_tuning() { static const PID_TUNING_AXIS axes[] = { PID_TUNING_ROLL, PID_TUNING_PITCH, PID_TUNING_YAW, PID_TUNING_ACCZ }; for (uint8_t i=0; iget_rate_roll_pid().get_pid_info(); break; case PID_TUNING_PITCH: pid_info = &copter.attitude_control->get_rate_pitch_pid().get_pid_info(); break; case PID_TUNING_YAW: pid_info = &copter.attitude_control->get_rate_yaw_pid().get_pid_info(); break; case PID_TUNING_ACCZ: pid_info = &copter.pos_control->get_accel_z_pid().get_pid_info(); break; default: continue; } if (pid_info != nullptr) { mavlink_msg_pid_tuning_send(chan, axes[i], pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D, pid_info->slew_rate, pid_info->Dmod); } } } // send winch status message void GCS_MAVLINK_Copter::send_winch_status() const { #if WINCH_ENABLED == ENABLED AP_Winch *winch = AP::winch(); if (winch == nullptr) { return; } winch->send_status(*this); #endif } uint8_t GCS_MAVLINK_Copter::sysid_my_gcs() const { return copter.g.sysid_my_gcs; } bool GCS_MAVLINK_Copter::sysid_enforce() const { return copter.g2.sysid_enforce; } uint32_t GCS_MAVLINK_Copter::telem_delay() const { return (uint32_t)(copter.g.telem_delay); } bool GCS_Copter::vehicle_initialised() const { return copter.ap.initialised; } // try to send a message, return false if it wasn't sent bool GCS_MAVLINK_Copter::try_send_message(enum ap_message id) { switch(id) { case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); copter.terrain.send_request(chan); #endif break; case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); send_wind(); break; case MSG_SERVO_OUT: case MSG_AOA_SSA: case MSG_LANDING: // unused break; case MSG_ADSB_VEHICLE: { #if HAL_ADSB_ENABLED CHECK_PAYLOAD_SIZE(ADSB_VEHICLE); copter.adsb.send_adsb_vehicle(chan); #endif #if AC_OAPATHPLANNER_ENABLED == ENABLED AP_OADatabase *oadb = AP_OADatabase::get_singleton(); if (oadb != nullptr) { CHECK_PAYLOAD_SIZE(ADSB_VEHICLE); uint16_t interval_ms = 0; if (get_ap_message_interval(id, interval_ms)) { oadb->send_adsb_vehicle(chan, interval_ms); } } #endif break; } default: return GCS_MAVLINK::try_send_message(id); } return true; } const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 0), // @Param: RAW_CTRL // @DisplayName: Unused // @Description: Unused // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Stream rate of ATTITUDE, SIMSTATE (SIM only), AHRS2 and PID_TUNING to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Stream rate of VFR_HUD to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Stream rate of AHRS, HWSTATUS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, MOUNT_STATUS, OPTICAL_FLOW, GIMBAL_REPORT, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Stream rate of PARAM_VALUE to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 0), // @Param: ADSB // @DisplayName: ADSB stream rate to ground station // @Description: ADSB stream rate to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @RebootRequired: True // @User: Advanced AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 0), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_SYS_STATUS, MSG_POWER_STATUS, MSG_MCU_STATUS, MSG_MEMINFO, MSG_CURRENT_WAYPOINT, // MISSION_CURRENT MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, MSG_POSITION_TARGET_GLOBAL_INT, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RC_CHANNELS, MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, MSG_AHRS2, MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_SYSTEM_TIME, MSG_WIND, MSG_RANGEFINDER, MSG_DISTANCE_SENSOR, #if AP_TERRAIN_AVAILABLE MSG_TERRAIN, #endif MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, MSG_RPM, MSG_ESC_TELEMETRY, MSG_GENERATOR_STATUS, MSG_WINCH_STATUS, }; static const ap_message STREAM_PARAMS_msgs[] = { MSG_NEXT_PARAM }; static const ap_message STREAM_ADSB_msgs[] = { MSG_ADSB_VEHICLE }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_ADSB), MAV_STREAM_ENTRY(STREAM_PARAMS), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Copter::handle_guided_request(AP_Mission::Mission_Command &cmd) { #if MODE_AUTO_ENABLED == ENABLED return copter.mode_auto.do_guided(cmd); #else return false; #endif } void GCS_MAVLINK_Copter::packetReceived(const mavlink_status_t &status, const mavlink_message_t &msg) { #if HAL_ADSB_ENABLED if (copter.g2.dev_options.get() & DevOptionADSBMAVLink) { // optional handling of GLOBAL_POSITION_INT as a MAVLink based avoidance source copter.avoidance_adsb.handle_msg(msg); } #endif #if MODE_FOLLOW_ENABLED == ENABLED // pass message to follow library copter.g2.follow.handle_msg(msg); #endif GCS_MAVLINK::packetReceived(status, msg); } bool GCS_MAVLINK_Copter::params_ready() const { if (AP_BoardConfig::in_config_error()) { // we may never have parameters "initialised" in this case return true; } // if we have not yet initialised (including allocating the motors // object) we drop this request. That prevents the GCS from getting // a confusing parameter count during bootup return copter.ap.initialised_params; } void GCS_MAVLINK_Copter::send_banner() { GCS_MAVLINK::send_banner(); if (copter.motors == nullptr) { send_text(MAV_SEVERITY_INFO, "motors not allocated"); return; } char frame_and_type_string[30]; copter.motors->get_frame_and_type_string(frame_and_type_string, ARRAY_SIZE(frame_and_type_string)); send_text(MAV_SEVERITY_INFO, "%s", frame_and_type_string); } void GCS_MAVLINK_Copter::handle_command_ack(const mavlink_message_t &msg) { copter.command_ack_counter++; GCS_MAVLINK::handle_command_ack(msg); } /* handle a LANDING_TARGET command. The timestamp has been jitter corrected */ void GCS_MAVLINK_Copter::handle_landing_target(const mavlink_landing_target_t &packet, uint32_t timestamp_ms) { #if PRECISION_LANDING == ENABLED copter.precland.handle_msg(packet, timestamp_ms); #endif } MAV_RESULT GCS_MAVLINK_Copter::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param6,1.0f)) { // compassmot calibration return copter.mavlink_compassmot(*this); } return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } MAV_RESULT GCS_MAVLINK_Copter::handle_command_do_set_roi(const Location &roi_loc) { if (!roi_loc.check_latlng()) { return MAV_RESULT_FAILED; } copter.flightmode->auto_yaw.set_roi(roi_loc); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Copter::handle_preflight_reboot(const mavlink_command_long_t &packet) { // reject reboot if user has also specified they want the "Auto" ESC calibration on next reboot if (copter.g.esc_calibrate == (uint8_t)Copter::ESCCalibrationModes::ESCCAL_AUTO) { send_text(MAV_SEVERITY_CRITICAL, "Reboot rejected, ESC cal on reboot"); return MAV_RESULT_FAILED; } // call parent return GCS_MAVLINK::handle_preflight_reboot(packet); } bool GCS_MAVLINK_Copter::set_home_to_current_location(bool _lock) { return copter.set_home_to_current_location(_lock); } bool GCS_MAVLINK_Copter::set_home(const Location& loc, bool _lock) { return copter.set_home(loc, _lock); } MAV_RESULT GCS_MAVLINK_Copter::handle_command_int_do_reposition(const mavlink_command_int_t &packet) { const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE; if (!copter.flightmode->in_guided_mode() && !change_modes) { return MAV_RESULT_DENIED; } // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_DENIED; } Location request_location; if (!location_from_command_t(packet, request_location)) { return MAV_RESULT_DENIED; } if (request_location.sanitize(copter.current_loc)) { // if the location wasn't already sane don't load it return MAV_RESULT_DENIED; // failed as the location is not valid } // we need to do this first, as we don't want to change the flight mode unless we can also set the target if (!copter.mode_guided.set_destination(request_location, false, 0, false, 0)) { return MAV_RESULT_FAILED; } if (!copter.flightmode->in_guided_mode()) { if (!copter.set_mode(Mode::Number::GUIDED, ModeReason::GCS_COMMAND)) { return MAV_RESULT_FAILED; } // the position won't have been loaded if we had to change the flight mode, so load it again if (!copter.mode_guided.set_destination(request_location, false, 0, false, 0)) { return MAV_RESULT_FAILED; } } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Copter::handle_command_int_packet(const mavlink_command_int_t &packet) { switch(packet.command) { case MAV_CMD_DO_FOLLOW: #if MODE_FOLLOW_ENABLED == ENABLED // param1: sysid of target to follow if ((packet.param1 > 0) && (packet.param1 <= 255)) { copter.g2.follow.set_target_sysid((uint8_t)packet.param1); return MAV_RESULT_ACCEPTED; } #endif return MAV_RESULT_UNSUPPORTED; case MAV_CMD_DO_REPOSITION: return handle_command_int_do_reposition(packet); // pause or resume an auto mission case MAV_CMD_DO_PAUSE_CONTINUE: return handle_command_pause_continue(packet); default: return GCS_MAVLINK::handle_command_int_packet(packet); } } MAV_RESULT GCS_MAVLINK_Copter::handle_command_mount(const mavlink_command_long_t &packet) { switch (packet.command) { #if HAL_MOUNT_ENABLED case MAV_CMD_DO_MOUNT_CONTROL: // if vehicle has a camera mount but it doesn't do pan control then yaw the entire vehicle instead if ((copter.camera_mount.get_mount_type() != copter.camera_mount.MountType::Mount_Type_None) && !copter.camera_mount.has_pan_control()) { copter.flightmode->auto_yaw.set_yaw_angle_rate( (float)packet.param3 * 0.01f, 0.0f); } break; #endif default: break; } return GCS_MAVLINK::handle_command_mount(packet); } MAV_RESULT GCS_MAVLINK_Copter::handle_command_long_packet(const mavlink_command_long_t &packet) { switch(packet.command) { case MAV_CMD_NAV_TAKEOFF: { // param3 : horizontal navigation by pilot acceptable // param4 : yaw angle (not supported) // param5 : latitude (not supported) // param6 : longitude (not supported) // param7 : altitude [metres] float takeoff_alt = packet.param7 * 100; // Convert m to cm if (!copter.flightmode->do_user_takeoff(takeoff_alt, is_zero(packet.param3))) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } #if MODE_AUTO_ENABLED == ENABLED case MAV_CMD_DO_LAND_START: if (copter.mode_auto.jump_to_landing_sequence_auto_RTL(ModeReason::GCS_COMMAND)) { return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; #endif case MAV_CMD_NAV_LOITER_UNLIM: if (!copter.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_RETURN_TO_LAUNCH: if (!copter.set_mode(Mode::Number::RTL, ModeReason::GCS_COMMAND)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; case MAV_CMD_NAV_LAND: if (!copter.set_mode(Mode::Number::LAND, ModeReason::GCS_COMMAND)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; #if MODE_FOLLOW_ENABLED == ENABLED case MAV_CMD_DO_FOLLOW: // param1: sysid of target to follow if ((packet.param1 > 0) && (packet.param1 <= 255)) { copter.g2.follow.set_target_sysid((uint8_t)packet.param1); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; #endif case MAV_CMD_CONDITION_YAW: // param1 : target angle [0-360] // param2 : speed during change [deg per second] // param3 : direction (-1:ccw, +1:cw) // param4 : relative offset (1) or absolute angle (0) if ((packet.param1 >= 0.0f) && (packet.param1 <= 360.0f) && (is_zero(packet.param4) || is_equal(packet.param4,1.0f))) { copter.flightmode->auto_yaw.set_fixed_yaw( packet.param1, packet.param2, (int8_t)packet.param3, is_positive(packet.param4)); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; case MAV_CMD_DO_CHANGE_SPEED: // param1 : Speed type (0 or 1=Ground Speed, 2=Climb Speed, 3=Descent Speed) // param2 : new speed in m/s // param3 : unused // param4 : unused if (packet.param2 > 0.0f) { if (packet.param1 > 2.9f) { // 3 = speed down copter.wp_nav->set_speed_down(packet.param2 * 100.0f); } else if (packet.param1 > 1.9f) { // 2 = speed up copter.wp_nav->set_speed_up(packet.param2 * 100.0f); } else { copter.wp_nav->set_speed_xy(packet.param2 * 100.0f); } return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; #if MODE_AUTO_ENABLED == ENABLED case MAV_CMD_MISSION_START: if (copter.set_mode(Mode::Number::AUTO, ModeReason::GCS_COMMAND)) { copter.set_auto_armed(true); if (copter.mode_auto.mission.state() != AP_Mission::MISSION_RUNNING) { copter.mode_auto.mission.start_or_resume(); } return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; #endif #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: // configure or release parachute switch ((uint16_t)packet.param1) { case PARACHUTE_DISABLE: copter.parachute.enabled(false); return MAV_RESULT_ACCEPTED; case PARACHUTE_ENABLE: copter.parachute.enabled(true); return MAV_RESULT_ACCEPTED; case PARACHUTE_RELEASE: // treat as a manual release which performs some additional check of altitude copter.parachute_manual_release(); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; #endif case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) // param5 : num_motors (in sequence) // param6 : motor test order return copter.mavlink_motor_test_start(*this, (uint8_t)packet.param1, (uint8_t)packet.param2, packet.param3, packet.param4, (uint8_t)packet.param5); #if WINCH_ENABLED == ENABLED case MAV_CMD_DO_WINCH: // param1 : winch number (ignored) // param2 : action (0=relax, 1=relative length control, 2=rate control). See WINCH_ACTIONS enum. if (!copter.g2.winch.enabled()) { return MAV_RESULT_FAILED; } switch ((uint8_t)packet.param2) { case WINCH_RELAXED: copter.g2.winch.relax(); return MAV_RESULT_ACCEPTED; case WINCH_RELATIVE_LENGTH_CONTROL: { copter.g2.winch.release_length(packet.param3); return MAV_RESULT_ACCEPTED; } case WINCH_RATE_CONTROL: copter.g2.winch.set_desired_rate(packet.param4); return MAV_RESULT_ACCEPTED; default: break; } return MAV_RESULT_FAILED; #endif #if LANDING_GEAR_ENABLED == ENABLED case MAV_CMD_AIRFRAME_CONFIGURATION: { // Param 1: Select which gear, not used in ArduPilot // Param 2: 0 = Deploy, 1 = Retract // For safety, anything other than 1 will deploy switch ((uint8_t)packet.param2) { case 1: copter.landinggear.set_position(AP_LandingGear::LandingGear_Retract); return MAV_RESULT_ACCEPTED; default: copter.landinggear.set_position(AP_LandingGear::LandingGear_Deploy); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } #endif /* Solo user presses Fly button */ case MAV_CMD_SOLO_BTN_FLY_CLICK: { if (copter.failsafe.radio) { return MAV_RESULT_ACCEPTED; } // set mode to Loiter or fall back to AltHold if (!copter.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) { copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::GCS_COMMAND); } return MAV_RESULT_ACCEPTED; } /* Solo user holds down Fly button for a couple of seconds */ case MAV_CMD_SOLO_BTN_FLY_HOLD: { if (copter.failsafe.radio) { return MAV_RESULT_ACCEPTED; } if (!copter.motors->armed()) { // if disarmed, arm motors copter.arming.arm(AP_Arming::Method::MAVLINK); } else if (copter.ap.land_complete) { // if armed and landed, takeoff if (copter.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) { copter.flightmode->do_user_takeoff(packet.param1*100, true); } } else { // if flying, land copter.set_mode(Mode::Number::LAND, ModeReason::GCS_COMMAND); } return MAV_RESULT_ACCEPTED; } /* Solo user presses pause button */ case MAV_CMD_SOLO_BTN_PAUSE_CLICK: { if (copter.failsafe.radio) { return MAV_RESULT_ACCEPTED; } if (copter.motors->armed()) { if (copter.ap.land_complete) { // if landed, disarm motors copter.arming.disarm(AP_Arming::Method::SOLOPAUSEWHENLANDED); } else { // assume that shots modes are all done in guided. // NOTE: this may need to change if we add a non-guided shot mode bool shot_mode = (!is_zero(packet.param1) && (copter.flightmode->mode_number() == Mode::Number::GUIDED || copter.flightmode->mode_number() == Mode::Number::GUIDED_NOGPS)); if (!shot_mode) { #if MODE_BRAKE_ENABLED == ENABLED if (copter.set_mode(Mode::Number::BRAKE, ModeReason::GCS_COMMAND)) { copter.mode_brake.timeout_to_loiter_ms(2500); } else { copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::GCS_COMMAND); } #else copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::GCS_COMMAND); #endif } else { // SoloLink is expected to handle pause in shots } } } return MAV_RESULT_ACCEPTED; } // pause or resume an auto mission case MAV_CMD_DO_PAUSE_CONTINUE: { mavlink_command_int_t packet_int; GCS_MAVLINK_Copter::convert_COMMAND_LONG_to_COMMAND_INT(packet, packet_int); return handle_command_pause_continue(packet_int); } default: return GCS_MAVLINK::handle_command_long_packet(packet); } } MAV_RESULT GCS_MAVLINK_Copter::handle_command_pause_continue(const mavlink_command_int_t &packet) { // requested pause if ((uint8_t) packet.param1 == 0) { if (copter.flightmode->pause()) { return MAV_RESULT_ACCEPTED; } send_text(MAV_SEVERITY_INFO, "Failed to pause"); return MAV_RESULT_FAILED; } // requested resume if ((uint8_t) packet.param1 == 1) { if (copter.flightmode->resume()) { return MAV_RESULT_ACCEPTED; } send_text(MAV_SEVERITY_INFO, "Failed to resume"); return MAV_RESULT_FAILED; } return MAV_RESULT_DENIED; } void GCS_MAVLINK_Copter::handle_mount_message(const mavlink_message_t &msg) { switch (msg.msgid) { #if HAL_MOUNT_ENABLED case MAVLINK_MSG_ID_MOUNT_CONTROL: // if vehicle has a camera mount but it doesn't do pan control then yaw the entire vehicle instead if ((copter.camera_mount.get_mount_type() != copter.camera_mount.MountType::Mount_Type_None) && !copter.camera_mount.has_pan_control()) { copter.flightmode->auto_yaw.set_yaw_angle_rate( mavlink_msg_mount_control_get_input_c(&msg) * 0.01f, 0.0f); break; } #endif } GCS_MAVLINK::handle_mount_message(msg); } void GCS_MAVLINK_Copter::handleMessage(const mavlink_message_t &msg) { // for mavlink SET_POSITION_TARGET messages constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE = POSITION_TARGET_TYPEMASK_X_IGNORE | POSITION_TARGET_TYPEMASK_Y_IGNORE | POSITION_TARGET_TYPEMASK_Z_IGNORE; constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE; constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE = POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE; constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE = POSITION_TARGET_TYPEMASK_YAW_IGNORE; constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE = POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE; constexpr uint32_t MAVLINK_SET_POS_TYPE_MASK_FORCE_SET = POSITION_TARGET_TYPEMASK_FORCE_SET; switch (msg.msgid) { case MAVLINK_MSG_ID_MANUAL_CONTROL: { if (msg.sysid != copter.g.sysid_my_gcs) { break; // only accept control from our gcs } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(&msg, &packet); if (packet.target != copter.g.sysid_this_mav) { break; // only accept control aimed at us } if (packet.z < 0) { // Copter doesn't do negative thrust break; } uint32_t tnow = AP_HAL::millis(); manual_override(copter.channel_roll, packet.y, 1000, 2000, tnow); manual_override(copter.channel_pitch, packet.x, 1000, 2000, tnow, true); manual_override(copter.channel_throttle, packet.z, 0, 1000, tnow); manual_override(copter.channel_yaw, packet.r, 1000, 2000, tnow); // a manual control message is considered to be a 'heartbeat' // from the ground station for failsafe purposes gcs().sysid_myggcs_seen(tnow); break; } #if MODE_GUIDED_ENABLED == ENABLED case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82 { // decode packet mavlink_set_attitude_target_t packet; mavlink_msg_set_attitude_target_decode(&msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if (!copter.flightmode->in_guided_mode()) { break; } const bool roll_rate_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_BODY_ROLL_RATE_IGNORE; const bool pitch_rate_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_BODY_PITCH_RATE_IGNORE; const bool yaw_rate_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_BODY_YAW_RATE_IGNORE; const bool throttle_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_THROTTLE_IGNORE; const bool attitude_ignore = packet.type_mask & ATTITUDE_TARGET_TYPEMASK_ATTITUDE_IGNORE; // ensure thrust field is not ignored if (throttle_ignore) { break; } Quaternion attitude_quat; if (attitude_ignore) { attitude_quat.zero(); } else { attitude_quat = Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]); // Do not accept the attitude_quaternion // if its magnitude is not close to unit length +/- 1E-3 // this limit is somewhat greater than sqrt(FLT_EPSL) if (!attitude_quat.is_unit_length()) { // The attitude quaternion is ill-defined break; } } // check if the message's thrust field should be interpreted as a climb rate or as thrust const bool use_thrust = copter.mode_guided.set_attitude_target_provides_thrust(); float climb_rate_or_thrust; if (use_thrust) { // interpret thrust as thrust climb_rate_or_thrust = constrain_float(packet.thrust, -1.0f, 1.0f); } else { // convert thrust to climb rate packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f); if (is_equal(packet.thrust, 0.5f)) { climb_rate_or_thrust = 0.0f; } else if (packet.thrust > 0.5f) { // climb at up to WPNAV_SPEED_UP climb_rate_or_thrust = (packet.thrust - 0.5f) * 2.0f * copter.wp_nav->get_default_speed_up(); } else { // descend at up to WPNAV_SPEED_DN climb_rate_or_thrust = (0.5f - packet.thrust) * 2.0f * -copter.wp_nav->get_default_speed_down(); } } Vector3f ang_vel; if (!roll_rate_ignore) { ang_vel.x = packet.body_roll_rate; } if (!pitch_rate_ignore) { ang_vel.y = packet.body_pitch_rate; } if (!yaw_rate_ignore) { ang_vel.z = packet.body_yaw_rate; } copter.mode_guided.set_angle(attitude_quat, ang_vel, climb_rate_or_thrust, use_thrust); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84 { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(&msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if (!copter.flightmode->in_guided_mode()) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { // input is not valid so stop copter.mode_guided.init(true); break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; bool force_set = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE_SET; // Force inputs are not supported // Do not accept command if force_set is true and acc_ignore is false if (force_set && !acc_ignore) { break; } // prepare position Vector3f pos_vector; if (!pos_ignore) { // convert to cm pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { copter.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y); } // add body offset if necessary if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED || packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { pos_vector += copter.inertial_nav.get_position_neu_cm(); } } // prepare velocity Vector3f vel_vector; if (!vel_ignore) { // convert to cm vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { copter.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y); } } // prepare acceleration Vector3f accel_vector; if (!acc_ignore) { // convert to cm accel_vector = Vector3f(packet.afx * 100.0f, packet.afy * 100.0f, -packet.afz * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { copter.rotate_body_frame_to_NE(accel_vector.x, accel_vector.y); } } // prepare yaw float yaw_cd = 0.0f; bool yaw_relative = false; float yaw_rate_cds = 0.0f; if (!yaw_ignore) { yaw_cd = ToDeg(packet.yaw) * 100.0f; yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED; } if (!yaw_rate_ignore) { yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // send request if (!pos_ignore && !vel_ignore) { copter.mode_guided.set_destination_posvelaccel(pos_vector, vel_vector, accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); } else if (pos_ignore && !vel_ignore) { copter.mode_guided.set_velaccel(vel_vector, accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); } else if (pos_ignore && vel_ignore && !acc_ignore) { copter.mode_guided.set_accel(accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); } else if (!pos_ignore && vel_ignore && acc_ignore) { copter.mode_guided.set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative, false); } else { // input is not valid so stop copter.mode_guided.init(true); } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86 { // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(&msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if (!copter.flightmode->in_guided_mode()) { break; } // todo: do we need to check for supported coordinate frames bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; bool force_set = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE_SET; // Force inputs are not supported // Do not accept command if force_set is true and acc_ignore is false if (force_set && !acc_ignore) { break; } // extract location from message Location loc; if (!pos_ignore) { // sanity check location if (!check_latlng(packet.lat_int, packet.lon_int)) { // input is not valid so stop copter.mode_guided.init(true); break; } Location::AltFrame frame; if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.coordinate_frame, frame)) { // unknown coordinate frame // input is not valid so stop copter.mode_guided.init(true); break; } loc = {packet.lat_int, packet.lon_int, int32_t(packet.alt*100), frame}; } // prepare velocity Vector3f vel_vector; if (!vel_ignore) { // convert to cm vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f); } // prepare acceleration Vector3f accel_vector; if (!acc_ignore) { // convert to cm accel_vector = Vector3f(packet.afx * 100.0f, packet.afy * 100.0f, -packet.afz * 100.0f); } // prepare yaw float yaw_cd = 0.0f; float yaw_rate_cds = 0.0f; if (!yaw_ignore) { yaw_cd = ToDeg(packet.yaw) * 100.0f; } if (!yaw_rate_ignore) { yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // send targets to the appropriate guided mode controller if (!pos_ignore && !vel_ignore) { // convert Location to vector from ekf origin for posvel controller if (loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN) { // posvel controller does not support alt-above-terrain // input is not valid so stop copter.mode_guided.init(true); break; } Vector3f pos_neu_cm; if (!loc.get_vector_from_origin_NEU(pos_neu_cm)) { // input is not valid so stop copter.mode_guided.init(true); break; } copter.mode_guided.set_destination_posvel(pos_neu_cm, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds); } else if (pos_ignore && !vel_ignore) { copter.mode_guided.set_velaccel(vel_vector, accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds); } else if (pos_ignore && vel_ignore && !acc_ignore) { copter.mode_guided.set_accel(accel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds); } else if (!pos_ignore && vel_ignore && acc_ignore) { copter.mode_guided.set_destination(loc, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds); } else { // input is not valid so stop copter.mode_guided.init(true); } break; } #endif case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109 { handle_radio_status(msg, copter.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE copter.terrain.handle_data(chan, msg); #endif break; #if TOY_MODE_ENABLED == ENABLED case MAVLINK_MSG_ID_NAMED_VALUE_INT: copter.g2.toy_mode.handle_message(msg); break; #endif default: handle_common_message(msg); break; } // end switch } // end handle mavlink MAV_RESULT GCS_MAVLINK_Copter::handle_flight_termination(const mavlink_command_long_t &packet) { #if ADVANCED_FAILSAFE == ENABLED if (GCS_MAVLINK::handle_flight_termination(packet) == MAV_RESULT_ACCEPTED) { return MAV_RESULT_ACCEPTED; } #endif if (packet.param1 > 0.5f) { copter.arming.disarm(AP_Arming::Method::TERMINATION); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; } float GCS_MAVLINK_Copter::vfr_hud_alt() const { if (copter.g2.dev_options.get() & DevOptionVFR_HUDRelativeAlt) { // compatibility option for older mavlink-aware devices that // assume Copter returns a relative altitude in VFR_HUD.alt return copter.current_loc.alt * 0.01f; } return GCS_MAVLINK::vfr_hud_alt(); } uint64_t GCS_MAVLINK_Copter::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_COMMAND_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION | MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | #if AP_TERRAIN_AVAILABLE (copter.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) | #endif GCS_MAVLINK::capabilities()); } MAV_LANDED_STATE GCS_MAVLINK_Copter::landed_state() const { if (copter.ap.land_complete) { return MAV_LANDED_STATE_ON_GROUND; } if (copter.flightmode->is_landing()) { return MAV_LANDED_STATE_LANDING; } if (copter.flightmode->is_taking_off()) { return MAV_LANDED_STATE_TAKEOFF; } return MAV_LANDED_STATE_IN_AIR; } void GCS_MAVLINK_Copter::send_wind() const { Vector3f airspeed_vec_bf; if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // if we don't have an airspeed estimate then we don't have a // valid wind estimate on copters return; } const Vector3f wind = AP::ahrs().wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), wind.length(), wind.z); } #if HAL_HIGH_LATENCY2_ENABLED int16_t GCS_MAVLINK_Copter::high_latency_target_altitude() const { AP_AHRS &ahrs = AP::ahrs(); struct Location global_position_current; UNUSED_RESULT(ahrs.get_location(global_position_current)); //return units are m if (copter.ap.initialised) { return 0.01 * (global_position_current.alt + copter.pos_control->get_pos_error_z_cm()); } return 0; } uint8_t GCS_MAVLINK_Copter::high_latency_tgt_heading() const { if (copter.ap.initialised) { // return units are deg/2 const Mode *flightmode = copter.flightmode; // need to convert -18000->18000 to 0->360/2 return wrap_360_cd(flightmode->wp_bearing()) / 200; } return 0; } uint16_t GCS_MAVLINK_Copter::high_latency_tgt_dist() const { if (copter.ap.initialised) { // return units are dm const Mode *flightmode = copter.flightmode; return MIN(flightmode->wp_distance() * 1.0e-2, UINT16_MAX) / 10; } return 0; } uint8_t GCS_MAVLINK_Copter::high_latency_tgt_airspeed() const { if (copter.ap.initialised) { // return units are m/s*5 return MIN(copter.pos_control->get_vel_target_cms().length() * 5.0e-2, UINT8_MAX); } return 0; } uint8_t GCS_MAVLINK_Copter::high_latency_wind_speed() const { Vector3f airspeed_vec_bf; Vector3f wind; // return units are m/s*5 if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { wind = AP::ahrs().wind_estimate(); return wind.length() * 5; } return 0; } uint8_t GCS_MAVLINK_Copter::high_latency_wind_direction() const { Vector3f airspeed_vec_bf; Vector3f wind; // return units are deg/2 if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { wind = AP::ahrs().wind_estimate(); // need to convert -180->180 to 0->360/2 return wrap_360(degrees(atan2f(-wind.y, -wind.x))) / 2; } return 0; } #endif // HAL_HIGH_LATENCY2_ENABLED