/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* handle disk IO for terrain code */ #include <AP_HAL/AP_HAL.h> #include <AP_Common/AP_Common.h> #include <AP_Math/AP_Math.h> #include <GCS_MAVLink/GCS_MAVLink.h> #include <GCS_MAVLink/GCS.h> #include "AP_Terrain.h" #if AP_TERRAIN_AVAILABLE #include <AP_Filesystem/AP_Filesystem.h> extern const AP_HAL::HAL& hal; /* calculate bit number in grid_block bitmap. This corresponds to a bit representing a 4x4 mavlink transmitted block */ uint8_t AP_Terrain::grid_bitnum(uint8_t idx_x, uint8_t idx_y) { ASSERT_RANGE(idx_x,0,27); ASSERT_RANGE(idx_y,0,31); uint8_t subgrid_x = idx_x / TERRAIN_GRID_MAVLINK_SIZE; uint8_t subgrid_y = idx_y / TERRAIN_GRID_MAVLINK_SIZE; ASSERT_RANGE(subgrid_x,0,TERRAIN_GRID_BLOCK_MUL_X-1); ASSERT_RANGE(subgrid_y,0,TERRAIN_GRID_BLOCK_MUL_Y-1); return subgrid_y + TERRAIN_GRID_BLOCK_MUL_Y*subgrid_x; } /* given a grid_info check that a given idx_x/idx_y is available (set in the bitmap) */ bool AP_Terrain::check_bitmap(const struct grid_block &grid, uint8_t idx_x, uint8_t idx_y) { uint8_t bitnum = grid_bitnum(idx_x, idx_y); return (grid.bitmap & (((uint64_t)1U)<<bitnum)) != 0; } /* given a location, calculate the 32x28 grid SW corner, plus the grid indices */ void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info) const { // grids start on integer degrees. This makes storing terrain data // on the SD card a bit easier info.lat_degrees = (loc.lat<0?(loc.lat-9999999L):loc.lat) / (10*1000*1000L); info.lon_degrees = (loc.lng<0?(loc.lng-9999999L):loc.lng) / (10*1000*1000L); // create reference position for this rounded degree position Location ref; ref.lat = info.lat_degrees*10*1000*1000L; ref.lng = info.lon_degrees*10*1000*1000L; // find offset from reference const Vector2f offset = ref.get_distance_NE(loc); // get indices in terms of grid_spacing elements uint32_t idx_x = offset.x / grid_spacing; uint32_t idx_y = offset.y / grid_spacing; // find indexes into 32*28 grids for this degree reference. Note // the use of TERRAIN_GRID_BLOCK_SPACING_{X,Y} which gives a one square // overlap between grids info.grid_idx_x = idx_x / TERRAIN_GRID_BLOCK_SPACING_X; info.grid_idx_y = idx_y / TERRAIN_GRID_BLOCK_SPACING_Y; // find the indices within the 32*28 grid info.idx_x = idx_x % TERRAIN_GRID_BLOCK_SPACING_X; info.idx_y = idx_y % TERRAIN_GRID_BLOCK_SPACING_Y; // find the fraction (0..1) within the square info.frac_x = (offset.x - idx_x * grid_spacing) / grid_spacing; info.frac_y = (offset.y - idx_y * grid_spacing) / grid_spacing; // calculate lat/lon of SW corner of 32*28 grid_block ref.offset(info.grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X * (float)grid_spacing, info.grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y * (float)grid_spacing); info.grid_lat = ref.lat; info.grid_lon = ref.lng; ASSERT_RANGE(info.idx_x,0,TERRAIN_GRID_BLOCK_SPACING_X-1); ASSERT_RANGE(info.idx_y,0,TERRAIN_GRID_BLOCK_SPACING_Y-1); ASSERT_RANGE(info.frac_x,0,1); ASSERT_RANGE(info.frac_y,0,1); } /* find a grid structure given a grid_info */ AP_Terrain::grid_cache &AP_Terrain::find_grid_cache(const struct grid_info &info) { uint16_t oldest_i = 0; // see if we have that grid for (uint16_t i=0; i<cache_size; i++) { if (cache[i].grid.lat == info.grid_lat && cache[i].grid.lon == info.grid_lon && cache[i].grid.spacing == grid_spacing) { cache[i].last_access_ms = AP_HAL::millis(); return cache[i]; } if (cache[i].last_access_ms < cache[oldest_i].last_access_ms) { oldest_i = i; } } // Not found. Use the oldest grid and make it this grid, // initially unpopulated struct grid_cache &grid = cache[oldest_i]; memset(&grid, 0, sizeof(grid)); grid.grid.lat = info.grid_lat; grid.grid.lon = info.grid_lon; grid.grid.spacing = grid_spacing; grid.grid.grid_idx_x = info.grid_idx_x; grid.grid.grid_idx_y = info.grid_idx_y; grid.grid.lat_degrees = info.lat_degrees; grid.grid.lon_degrees = info.lon_degrees; grid.grid.version = TERRAIN_GRID_FORMAT_VERSION; grid.last_access_ms = AP_HAL::millis(); // mark as waiting for disk read grid.state = GRID_CACHE_DISKWAIT; return grid; } /* find cache index of disk_block */ int16_t AP_Terrain::find_io_idx(enum GridCacheState state) { // try first with given state for (uint16_t i=0; i<cache_size; i++) { if (disk_block.block.lat == cache[i].grid.lat && disk_block.block.lon == cache[i].grid.lon && cache[i].state == state) { return i; } } // then any state for (uint16_t i=0; i<cache_size; i++) { if (disk_block.block.lat == cache[i].grid.lat && disk_block.block.lon == cache[i].grid.lon) { return i; } } return -1; } /* get CRC for a block */ uint16_t AP_Terrain::get_block_crc(struct grid_block &block) { uint16_t saved_crc = block.crc; block.crc = 0; uint16_t ret = crc16_ccitt((const uint8_t *)&block, sizeof(block), 0); block.crc = saved_crc; return ret; } #endif // AP_TERRAIN_AVAILABLE