// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CONFIG_SONAR == ENABLED static void init_sonar(void) { /* #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC sonar.calculate_scaler(g.sonar_type, 3.3); #else sonar.calculate_scaler(g.sonar_type, 5.0); #endif */ } #endif #if LITE == DISABLED // Sensors are not available in HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE void ReadSCP1000(void) {} static void init_barometer(void) { int flashcount = 0; long ground_pressure = 0; int ground_temperature; while (ground_pressure == 0 || !barometer.healthy) { barometer.read(); // Get initial data from absolute pressure sensor ground_pressure = baro_filter.apply(barometer.get_pressure()); //ground_pressure = barometer.get_pressure(); ground_temperature = barometer.get_temperature(); mavlink_delay(20); //Serial.printf("barometer.Press %ld\n", barometer.get_pressure()); } for(int i = 0; i < 30; i++){ // We take some readings... #if HIL_MODE == HIL_MODE_SENSORS gcs_update(); // look for inbound hil packets #endif do { barometer.read(); // Get pressure sensor } while (!barometer.healthy); ground_pressure = baro_filter.apply(barometer.get_pressure()); //ground_pressure = (ground_pressure * 9l + barometer.get_pressure()) / 10l; ground_temperature = (ground_temperature * 9 + barometer.get_temperature()) / 10; mavlink_delay(20); if(flashcount == 5) { digitalWrite(C_LED_PIN, LED_OFF); digitalWrite(A_LED_PIN, LED_ON); digitalWrite(B_LED_PIN, LED_OFF); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, LED_ON); digitalWrite(A_LED_PIN, LED_OFF); digitalWrite(B_LED_PIN, LED_ON); } flashcount++; } g.ground_pressure.set_and_save(ground_pressure); g.ground_temperature.set_and_save(ground_temperature / 10.0f); abs_pressure = ground_pressure; Serial.printf_P(PSTR("abs_pressure %ld\n"), abs_pressure); gcs_send_text_P(SEVERITY_MEDIUM, PSTR("barometer calibration complete.")); } static int32_t read_barometer(void) { float x, scaling, temp; barometer.read(); // Get new data from absolute pressure sensor float abs_pressure = baro_filter.apply(barometer.get_pressure()); //abs_pressure = (abs_pressure + barometer.get_pressure()) >> 1; // Small filtering //abs_pressure = ((float)abs_pressure * .7) + ((float)barometer.get_pressure() * .3); // large filtering scaling = (float)g.ground_pressure / (float)abs_pressure; temp = ((float)g.ground_temperature) + 273.15f; x = log(scaling) * temp * 29271.267f; return (x / 10); } // in M/S * 100 static void read_airspeed(void) { } static void zero_airspeed(void) { } #endif // HIL_MODE != HIL_MODE_ATTITUDE #endif static void read_battery(void) { if(g.battery_monitoring == 0) { battery_voltage1 = 0; return; } if(g.battery_monitoring == 3 || g.battery_monitoring == 4) { static AP_AnalogSource_Arduino bat_pin(BATTERY_PIN_1); battery_voltage1 = BATTERY_VOLTAGE(bat_pin.read_average()); } if(g.battery_monitoring == 4) { static AP_AnalogSource_Arduino current_pin(CURRENT_PIN_1); current_amps1 = CURRENT_AMPS(current_pin.read_average()); current_total1 += current_amps1 * (float)delta_ms_medium_loop * 0.0002778; // .0002778 is 1/3600 (conversion to hours) } #if BATTERY_EVENT == ENABLED if(battery_voltage1 < LOW_VOLTAGE) low_battery_event(); if(g.battery_monitoring == 4 && current_total1 > g.pack_capacity) low_battery_event(); #endif }