/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * RC_Channel.cpp - class for one RC channel input */ #include #include #include extern const AP_HAL::HAL& hal; #include #include "RC_Channel.h" uint32_t RC_Channel::configured_mask; const AP_Param::GroupInfo RC_Channel::var_info[] = { // @Param: MIN // @DisplayName: RC min PWM // @Description: RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("MIN", 1, RC_Channel, radio_min, 1100), // @Param: TRIM // @DisplayName: RC trim PWM // @Description: RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("TRIM", 2, RC_Channel, radio_trim, 1500), // @Param: MAX // @DisplayName: RC max PWM // @Description: RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("MAX", 3, RC_Channel, radio_max, 1900), // @Param: REVERSED // @DisplayName: RC reversed // @Description: Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel. // @Values: 0:Normal,1:Reversed // @User: Advanced AP_GROUPINFO("REVERSED", 4, RC_Channel, reversed, 0), // @Param: DZ // @DisplayName: RC dead-zone // @Description: PWM dead zone in microseconds around trim or bottom // @Units: PWM // @Range: 0 200 // @User: Advanced AP_GROUPINFO("DZ", 5, RC_Channel, dead_zone, 0), AP_GROUPEND }; // constructor RC_Channel::RC_Channel(void) { AP_Param::setup_object_defaults(this, var_info); } void RC_Channel::set_range(uint16_t high) { type_in = RC_CHANNEL_TYPE_RANGE; high_in = high; } void RC_Channel::set_angle(uint16_t angle) { type_in = RC_CHANNEL_TYPE_ANGLE; high_in = angle; } void RC_Channel::set_default_dead_zone(int16_t dzone) { dead_zone.set_default(abs(dzone)); } bool RC_Channel::get_reverse(void) const { return bool(reversed.get()); } // read input from APM_RC - create a control_in value void RC_Channel::set_pwm(int16_t pwm) { if (has_override()) { radio_in = override_value; } else { radio_in = pwm; } if (type_in == RC_CHANNEL_TYPE_RANGE) { control_in = pwm_to_range(); } else { //RC_CHANNEL_TYPE_ANGLE control_in = pwm_to_angle(); } } // recompute control values with no deadzone // When done this way the control_in value can be used as servo_out // to give the same output as input void RC_Channel::recompute_pwm_no_deadzone() { if (type_in == RC_CHANNEL_TYPE_RANGE) { control_in = pwm_to_range_dz(0); } else { //RC_CHANNEL_ANGLE control_in = pwm_to_angle_dz(0); } } /* return the center stick position expressed as a control_in value used for thr_mid in copter */ int16_t RC_Channel::get_control_mid() const { if (type_in == RC_CHANNEL_TYPE_RANGE) { int16_t r_in = (radio_min.get() + radio_max.get())/2; if (reversed) { r_in = radio_max.get() - (r_in - radio_min.get()); } int16_t radio_trim_low = radio_min + dead_zone; return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low)); } else { return 0; } } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value using the specified dead_zone */ int16_t RC_Channel::pwm_to_angle_dz_trim(uint16_t _dead_zone, uint16_t _trim) { int16_t radio_trim_high = _trim + _dead_zone; int16_t radio_trim_low = _trim - _dead_zone; int16_t reverse_mul = (reversed?-1:1); if (radio_in > radio_trim_high && radio_max != radio_trim_high) { return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_high)) / (int32_t)(radio_max - radio_trim_high); } else if (radio_in < radio_trim_low && radio_trim_low != radio_min) { return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_low)) / (int32_t)(radio_trim_low - radio_min); } else { return 0; } } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value using the specified dead_zone */ int16_t RC_Channel::pwm_to_angle_dz(uint16_t _dead_zone) { return pwm_to_angle_dz_trim(_dead_zone, radio_trim); } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value */ int16_t RC_Channel::pwm_to_angle() { return pwm_to_angle_dz(dead_zone); } /* convert a pulse width modulation value to a value in the configured range, using the specified deadzone */ int16_t RC_Channel::pwm_to_range_dz(uint16_t _dead_zone) { int16_t r_in = constrain_int16(radio_in, radio_min.get(), radio_max.get()); if (reversed) { r_in = radio_max.get() - (r_in - radio_min.get()); } int16_t radio_trim_low = radio_min + _dead_zone; if (r_in > radio_trim_low) { return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low)); } return 0; } /* convert a pulse width modulation value to a value in the configured range */ int16_t RC_Channel::pwm_to_range() { return pwm_to_range_dz(dead_zone); } int16_t RC_Channel::get_control_in_zero_dz(void) { if (type_in == RC_CHANNEL_TYPE_RANGE) { return pwm_to_range_dz(0); } return pwm_to_angle_dz(0); } // ------------------------------------------ float RC_Channel::norm_input() { float ret; int16_t reverse_mul = (reversed?-1:1); if (radio_in < radio_trim) { if (radio_min >= radio_trim) { return 0.0f; } ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min); } else { if (radio_max <= radio_trim) { return 0.0f; } ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim); } return constrain_float(ret, -1.0f, 1.0f); } float RC_Channel::norm_input_dz() { int16_t dz_min = radio_trim - dead_zone; int16_t dz_max = radio_trim + dead_zone; float ret; int16_t reverse_mul = (reversed?-1:1); if (radio_in < dz_min && dz_min > radio_min) { ret = reverse_mul * (float)(radio_in - dz_min) / (float)(dz_min - radio_min); } else if (radio_in > dz_max && radio_max > dz_max) { ret = reverse_mul * (float)(radio_in - dz_max) / (float)(radio_max - dz_max); } else { ret = 0; } return constrain_float(ret, -1.0f, 1.0f); } /* get percentage input from 0 to 100. This ignores the trim value. */ uint8_t RC_Channel::percent_input() { if (radio_in <= radio_min) { return reversed?100:0; } if (radio_in >= radio_max) { return reversed?0:100; } uint8_t ret = 100.0f * (radio_in - radio_min) / (float)(radio_max - radio_min); if (reversed) { ret = 100 - ret; } return ret; } uint16_t RC_Channel::read() const { return hal.rcin->read(ch_in); } /* Return true if the channel is at trim and within the DZ */ bool RC_Channel::in_trim_dz() { return is_bounded_int32(radio_in, radio_trim - dead_zone, radio_trim + dead_zone); } void RC_Channel::set_override(const uint16_t v, const uint32_t timestamp_us) { last_override_time = timestamp_us != 0 ? timestamp_us : AP_HAL::millis(); override_value = v; } void RC_Channel::clear_override() { last_override_time = 0; override_value = 0; } bool RC_Channel::has_override() const { int32_t override_timeout = (int32_t)(*RC_Channels::override_timeout); return (override_value > 0) && ((override_timeout < 0) || ((AP_HAL::millis() - last_override_time) < (uint32_t)(override_timeout * 1000))); } bool RC_Channel::min_max_configured() const { if (configured_mask & (1U << ch_in)) { return true; } if (radio_min.configured() && radio_max.configured()) { // once a channel is known to be configured it has to stay // configured due to the nature of AP_Param configured_mask |= (1U<