/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This is the APMrover2 firmware. It was originally derived from ArduPlane by Jean-Louis Naudin (JLN), and then rewritten after the AP_HAL merge by Andrew Tridgell Maintainer: Randy Mackay, Grant Morphett Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Jean-Louis Naudin, Grant Morphett Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier APMrover alpha version tester: Franco Borasio, Daniel Chapelat... Please contribute your ideas! See https://dev.ardupilot.org for details */ #include "Rover.h" #define FORCE_VERSION_H_INCLUDE #include "version.h" #undef FORCE_VERSION_H_INCLUDE #include "AP_Gripper/AP_Gripper.h" const AP_HAL::HAL& hal = AP_HAL::get_HAL(); #define SCHED_TASK(func, _interval_ticks, _max_time_micros) SCHED_TASK_CLASS(Rover, &rover, func, _interval_ticks, _max_time_micros) /* scheduler table - all regular tasks are listed here, along with how often they should be called (in Hz) and the maximum time they are expected to take (in microseconds) */ const AP_Scheduler::Task Rover::scheduler_tasks[] = { // Function name, Hz, us, SCHED_TASK(read_radio, 50, 200), SCHED_TASK(ahrs_update, 400, 400), SCHED_TASK(read_rangefinders, 50, 200), SCHED_TASK(update_current_mode, 400, 200), SCHED_TASK(set_servos, 400, 200), SCHED_TASK(update_GPS, 50, 300), SCHED_TASK_CLASS(AP_Baro, &rover.barometer, update, 10, 200), SCHED_TASK_CLASS(AP_Beacon, &rover.g2.beacon, update, 50, 200), SCHED_TASK_CLASS(AP_Proximity, &rover.g2.proximity, update, 50, 200), SCHED_TASK_CLASS(AP_WindVane, &rover.g2.windvane, update, 20, 100), #if VISUAL_ODOMETRY_ENABLED == ENABLED SCHED_TASK_CLASS(AP_VisualOdom, &rover.g2.visual_odom, update, 50, 200), #endif SCHED_TASK_CLASS(AC_Fence, &rover.g2.fence, update, 10, 100), SCHED_TASK(update_wheel_encoder, 50, 200), SCHED_TASK(update_compass, 10, 200), SCHED_TASK(update_mission, 50, 200), SCHED_TASK(update_logging1, 10, 200), SCHED_TASK(update_logging2, 10, 200), SCHED_TASK_CLASS(GCS, (GCS*)&rover._gcs, update_receive, 400, 500), SCHED_TASK_CLASS(GCS, (GCS*)&rover._gcs, update_send, 400, 1000), SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&rover.g2.rc_channels, read_mode_switch, 7, 200), SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&rover.g2.rc_channels, read_aux_all, 10, 200), SCHED_TASK_CLASS(AP_BattMonitor, &rover.battery, read, 10, 300), SCHED_TASK_CLASS(AP_ServoRelayEvents, &rover.ServoRelayEvents, update_events, 50, 200), #if GRIPPER_ENABLED == ENABLED SCHED_TASK_CLASS(AP_Gripper, &rover.g2.gripper, update, 10, 75), #endif SCHED_TASK(rpm_update, 10, 100), #if MOUNT == ENABLED SCHED_TASK_CLASS(AP_Mount, &rover.camera_mount, update, 50, 200), #endif #if CAMERA == ENABLED SCHED_TASK_CLASS(AP_Camera, &rover.camera, update_trigger, 50, 200), #endif SCHED_TASK(gcs_failsafe_check, 10, 200), SCHED_TASK(fence_check, 10, 200), SCHED_TASK(ekf_check, 10, 100), SCHED_TASK_CLASS(ModeSmartRTL, &rover.mode_smartrtl, save_position, 3, 200), SCHED_TASK_CLASS(AP_Notify, &rover.notify, update, 50, 300), SCHED_TASK(one_second_loop, 1, 1500), #if HAL_SPRAYER_ENABLED SCHED_TASK_CLASS(AC_Sprayer, &rover.g2.sprayer, update, 3, 90), #endif SCHED_TASK_CLASS(Compass, &rover.compass, cal_update, 50, 200), SCHED_TASK(compass_save, 0.1, 200), SCHED_TASK(accel_cal_update, 10, 200), #if LOGGING_ENABLED == ENABLED SCHED_TASK_CLASS(AP_Logger, &rover.logger, periodic_tasks, 50, 300), #endif SCHED_TASK_CLASS(AP_InertialSensor, &rover.ins, periodic, 400, 200), SCHED_TASK_CLASS(AP_Scheduler, &rover.scheduler, update_logging, 0.1, 200), SCHED_TASK_CLASS(AP_Button, &rover.button, update, 5, 200), #if STATS_ENABLED == ENABLED SCHED_TASK(stats_update, 1, 200), #endif SCHED_TASK(crash_check, 10, 200), SCHED_TASK(cruise_learn_update, 50, 200), #if ADVANCED_FAILSAFE == ENABLED SCHED_TASK(afs_fs_check, 10, 200), #endif SCHED_TASK(read_airspeed, 10, 100), #if OSD_ENABLED == ENABLED SCHED_TASK(publish_osd_info, 1, 10), #endif }; void Rover::get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) { tasks = &scheduler_tasks[0]; task_count = ARRAY_SIZE(scheduler_tasks); log_bit = MASK_LOG_PM; } constexpr int8_t Rover::_failsafe_priorities[7]; Rover::Rover(void) : AP_Vehicle(), param_loader(var_info), channel_steer(nullptr), channel_throttle(nullptr), channel_lateral(nullptr), logger{g.log_bitmask}, modes(&g.mode1), control_mode(&mode_initializing), G_Dt(0.02f) { } #if STATS_ENABLED == ENABLED /* update AP_Stats */ void Rover::stats_update(void) { g2.stats.set_flying(g2.motors.active()); g2.stats.update(); } #endif /* loop() is called rapidly while the sketch is running */ void Rover::loop() { scheduler.loop(); G_Dt = scheduler.get_last_loop_time_s(); } // update AHRS system void Rover::ahrs_update() { arming.update_soft_armed(); #if HIL_MODE != HIL_MODE_DISABLED // update hil before AHRS update gcs().update(); #endif // AHRS may use movement to calculate heading update_ahrs_flyforward(); ahrs.update(); // update position have_position = ahrs.get_position(current_loc); // set home from EKF if necessary and possible if (!ahrs.home_is_set()) { if (!set_home_to_current_location(false)) { // ignore this failure } } // if using the EKF get a speed update now (from accelerometers) Vector3f velocity; if (ahrs.get_velocity_NED(velocity)) { ground_speed = norm(velocity.x, velocity.y); } else if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { ground_speed = ahrs.groundspeed(); } if (should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); Log_Write_Sail(); } if (should_log(MASK_LOG_IMU)) { logger.Write_IMU(); } } /* check for GCS failsafe - 10Hz */ void Rover::gcs_failsafe_check(void) { if (!g.fs_gcs_enabled) { // gcs failsafe disabled return; } // check for updates from GCS within 2 seconds failsafe_trigger(FAILSAFE_EVENT_GCS, failsafe.last_heartbeat_ms != 0 && (millis() - failsafe.last_heartbeat_ms) > 2000); } /* log some key data - 10Hz */ void Rover::update_logging1(void) { if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); Log_Write_Sail(); } if (should_log(MASK_LOG_THR)) { Log_Write_Throttle(); logger.Write_Beacon(g2.beacon); } if (should_log(MASK_LOG_NTUN)) { Log_Write_Nav_Tuning(); } if (should_log(MASK_LOG_RANGEFINDER)) { logger.Write_Proximity(g2.proximity); } } /* log some key data - 10Hz */ void Rover::update_logging2(void) { if (should_log(MASK_LOG_STEERING)) { Log_Write_Steering(); } if (should_log(MASK_LOG_RC)) { Log_Write_RC(); g2.wheel_encoder.Log_Write(); } if (should_log(MASK_LOG_IMU)) { logger.Write_Vibration(); } } /* once a second events */ void Rover::one_second_loop(void) { // allow orientation change at runtime to aid config ahrs.update_orientation(); set_control_channels(); // cope with changes to aux functions SRV_Channels::enable_aux_servos(); // update notify flags AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false); AP_Notify::flags.pre_arm_gps_check = true; AP_Notify::flags.armed = arming.is_armed() || arming.arming_required() == AP_Arming::Required::NO; AP_Notify::flags.flying = hal.util->get_soft_armed(); // cope with changes to mavlink system ID mavlink_system.sysid = g.sysid_this_mav; // attempt to update home position and baro calibration if not armed: if (!hal.util->get_soft_armed()) { update_home(); } // need to set "likely flying" when armed to allow for compass // learning to run set_likely_flying(hal.util->get_soft_armed()); // send latest param values to wp_nav g2.wp_nav.set_turn_params(g.turn_max_g, g2.turn_radius, g2.motors.have_skid_steering()); } void Rover::update_GPS(void) { gps.update(); if (gps.last_message_time_ms() != last_gps_msg_ms) { last_gps_msg_ms = gps.last_message_time_ms(); #if CAMERA == ENABLED camera.update(); #endif } } void Rover::update_current_mode(void) { // check for emergency stop if (SRV_Channels::get_emergency_stop()) { // relax controllers, motor stopping done at output level g2.attitude_control.relax_I(); } control_mode->update(); } // update mission including starting or stopping commands. called by scheduler at 10Hz void Rover::update_mission(void) { if (control_mode == &mode_auto) { if (ahrs.home_is_set() && mode_auto.mission.num_commands() > 1) { mode_auto.mission.update(); } } } #if OSD_ENABLED == ENABLED void Rover::publish_osd_info() { AP_OSD::NavInfo nav_info {0}; if (control_mode == &mode_loiter) { nav_info.wp_xtrack_error = control_mode->get_distance_to_destination(); } else { nav_info.wp_xtrack_error = control_mode->crosstrack_error(); } nav_info.wp_distance = control_mode->get_distance_to_destination(); nav_info.wp_bearing = control_mode->wp_bearing() * 100.0f; if (control_mode == &mode_auto) { nav_info.wp_number = mode_auto.mission.get_current_nav_index(); } osd.set_nav_info(nav_info); } #endif Rover rover; AP_Vehicle& vehicle = rover; AP_HAL_MAIN_CALLBACKS(&rover);