// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // This is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License as published by the // Free Software Foundation; either version 2.1 of the License, or (at // your option) any later version. // /// @file AP_Param.cpp /// @brief The AP variable store. #include #include #include // #define ENABLE_FASTSERIAL_DEBUG #ifdef ENABLE_FASTSERIAL_DEBUG # include # define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0) #else # define serialDebug(fmt, args...) #endif // Static member variables for AP_Param. // // number of rows in the _var_info[] table uint16_t AP_Param::_num_vars; // storage and naming information about all types that can be saved const AP_Param::Info *AP_Param::_var_info; // write to EEPROM, checking each byte to avoid writing // bytes that are already correct void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size) { const uint8_t *b = (const uint8_t *)ptr; while (size--) { uint8_t v = eeprom_read_byte((const uint8_t *)ofs); if (v != *b) { eeprom_write_byte((uint8_t *)ofs, *b); } b++; ofs++; } } // write a sentinal value at the given offset void AP_Param::write_sentinal(uint16_t ofs) { struct Param_header phdr; phdr.type = AP_PARAM_NONE; phdr.key = 0; phdr.group_element = 0; eeprom_write_check(&phdr, ofs, sizeof(phdr)); } // erase all EEPROM variables by re-writing the header and adding // a sentinal void AP_Param::erase_all(void) { struct EEPROM_header hdr; serialDebug("erase_all"); // write the header hdr.magic = k_EEPROM_magic; hdr.revision = k_EEPROM_revision; hdr.spare = 0; eeprom_write_check(&hdr, 0, sizeof(hdr)); // add a sentinal directly after the header write_sentinal(sizeof(struct EEPROM_header)); } // setup the _var_info[] table bool AP_Param::setup(const AP_Param::Info *info, uint16_t num_vars) { struct EEPROM_header hdr; _var_info = info; _num_vars = num_vars; serialDebug("setup %u vars", (unsigned)num_vars); // check the header eeprom_read_block(&hdr, 0, sizeof(hdr)); if (hdr.magic != k_EEPROM_magic || hdr.revision != k_EEPROM_revision) { // header doesn't match. We can't recover any variables. Wipe // the header and setup the sentinal directly after the header serialDebug("bad header in setup - erasing"); erase_all(); } return true; } // find the info structure given a header // return the Info structure and a pointer to the variables storage const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr) { // loop over all named variables for (uint16_t i=0; i<_num_vars; i++) { uint8_t type = pgm_read_byte(&_var_info[i].type); uint16_t key = pgm_read_word(&_var_info[i].key); if (key != phdr.key) { // not the right key continue; } if (type != AP_PARAM_GROUP) { // if its not a group then we are done *ptr = (void*)pgm_read_pointer(&_var_info[i].ptr); return &_var_info[i]; } // for groups we need to check each group element const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); for (uint8_t j=0; pgm_read_byte(&group_info[j].type) != AP_PARAM_NONE; j++) { if (j == phdr.group_element) { // found a group element *ptr = (void*)(pgm_read_pointer(&_var_info[i].ptr) + pgm_read_word(&group_info[j].offset)); return &_var_info[i]; } } } serialDebug("failed to find type=%u key=%u\n", (unsigned)phdr.type, (unsigned)phdr.key); return NULL; } // find the info structure for a variable const struct AP_Param::Info *AP_Param::find_var_info(uint8_t *group_element) { for (uint16_t i=0; i<_num_vars; i++) { uint8_t type = pgm_read_byte(&_var_info[i].type); uintptr_t base = pgm_read_pointer(&_var_info[i].ptr); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); for (uint8_t j=0; (type=pgm_read_byte(&group_info[j].type)) != AP_PARAM_NONE ; j++) { if ((uintptr_t)this == base + pgm_read_pointer(&group_info[j].offset)) { if (group_element != NULL) { *group_element = j; } return &_var_info[i]; } } } else if (base == (uintptr_t)this) { *group_element = 0; return &_var_info[i]; } } return NULL; } // return the storage size for a AP_PARAM_* type const uint8_t AP_Param::type_size(enum ap_var_type type) { switch (type) { case AP_PARAM_NONE: case AP_PARAM_GROUP: return 0; case AP_PARAM_INT8: return 1; case AP_PARAM_INT16: return 2; case AP_PARAM_INT32: return 4; case AP_PARAM_FLOAT: return 4; case AP_PARAM_VECTOR3F: return 3*4; case AP_PARAM_VECTOR6F: return 6*4; case AP_PARAM_MATRIX3F: return 3*3*4; } serialDebug("unknown type %u\n", type); return 0; } // scan the EEPROM looking for a given variable by header content // return true if found, along with the offset in the EEPROM where // the variable is stored // if not found return the offset of the sentinal, or bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); while (ofs < k_EEPROM_size) { eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr)); if (phdr.type == target->type && phdr.key == target->key && phdr.group_element == target->group_element) { // found it *pofs = ofs; return true; } if (phdr.type == AP_PARAM_NONE && phdr.key == 0) { // we've reached the sentinal *pofs = ofs; serialDebug("failed to scan type=%u key=%u\n", (unsigned)target->type, (unsigned)target->key); return false; } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } *pofs = ~0; serialDebug("scan past end of eeprom"); return false; } // Copy the variable's whole name to the supplied buffer. // // If the variable is a group member, prepend the group name. // void AP_Param::copy_name(char *buffer, size_t buffer_size) { uint8_t group_element; const struct AP_Param::Info *info = find_var_info(&group_element); if (info == NULL) { *buffer = 0; serialDebug("no info found"); return; } strncpy_P(buffer, info->name, buffer_size); if (pgm_read_byte(&info->type) == AP_PARAM_GROUP) { uint8_t len = strnlen(buffer, buffer_size); if (len < buffer_size) { const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&info->group_info); strncpy_P(&buffer[len], group_info->name, buffer_size-len); } } } // Find a variable by name. // AP_Param * AP_Param::find(const char *name) { for (uint16_t i=0; i<_num_vars; i++) { uint8_t type = pgm_read_byte(&_var_info[i].type); if (type == AP_PARAM_GROUP) { uint8_t len = strnlen_P(_var_info[i].name, AP_MAX_NAME_SIZE); if (strncmp_P(name, _var_info[i].name, len) != 0) { continue; } const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); for (uint8_t j=0; (type=pgm_read_byte(&group_info[j].type)) != AP_PARAM_NONE ; j++) { if (strcasecmp_P(name+len, group_info[j].name) == 0) { uintptr_t p = pgm_read_pointer(&_var_info[i].ptr); return (AP_Param *)(p + pgm_read_pointer(&group_info[j].offset)); } } } else if (strcasecmp_P(name, _var_info[i].name) == 0) { return (AP_Param *)pgm_read_pointer(&_var_info[i].ptr); } } return NULL; } // Save the variable to EEPROM, if supported // bool AP_Param::save(void) { uint8_t group_element; const struct AP_Param::Info *info = find_var_info(&group_element); if (info == NULL) { // we don't have any info on how to store it return false; } struct Param_header phdr; // create the header we will use to store the variable phdr.type = pgm_read_byte(&info->type); phdr.key = pgm_read_word(&info->key); phdr.group_element = group_element; // scan EEPROM to find the right location uint16_t ofs; if (scan(&phdr, &ofs)) { // found an existing copy of the variable eeprom_write_check(this, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); return true; } if (ofs == (uint16_t)~0) { return false; } // write a new sentinal, then the data, then the header write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type)); eeprom_write_check(this, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); eeprom_write_check(&phdr, ofs, sizeof(phdr)); return true; } // Load the variable from EEPROM, if supported // bool AP_Param::load(void) { uint8_t group_element; const struct AP_Param::Info *info = find_var_info(&group_element); if (info == NULL) { // we don't have any info on how to load it return false; } struct Param_header phdr; // create the header we will use to match the variable phdr.type = pgm_read_byte(&info->type); phdr.key = pgm_read_word(&info->key); phdr.group_element = group_element; // scan EEPROM to find the right location uint16_t ofs; if (!scan(&phdr, &ofs)) { return false; } // found it eeprom_read_block(this, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type)); return true; } // Load all variables from EEPROM // bool AP_Param::load_all(void) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); while (ofs < k_EEPROM_size) { eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr)); if (phdr.type == AP_PARAM_NONE && phdr.key == 0) { // we've reached the sentinal return true; } const struct AP_Param::Info *info; void *ptr; info = find_by_header(phdr, &ptr); if (info != NULL) { eeprom_read_block(ptr, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type)); } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } // we didn't find the sentinal serialDebug("no sentinal in load_all"); return false; }