/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define THISFIRMWARE "ArduCopter V2.7.3" /* * ArduCopter Version 2.7.3 * Lead author: Jason Short * Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni * Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini * * This firmware is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Special Thanks for Contributors: * * Hein Hollander :Octo Support * Dani Saez :V Ocoto Support * Max Levine :Tri Support, Graphics * Jose Julio :Stabilization Control laws * Randy MacKay :Heli Support * Jani Hiriven :Testing feedback * Andrew Tridgell :Mavlink Support * James Goppert :Mavlink Support * Doug Weibel :Libraries * Mike Smith :Libraries, Coding support * HappyKillmore :Mavlink GCS * Michael Oborne :Mavlink GCS * Jack Dunkle :Alpha testing * Christof Schmid :Alpha testing * Oliver :Piezo support * Guntars :Arming safety suggestion * Igor van Airde :Control Law optimization * Jean-Louis Naudin :Auto Landing * Sandro Benigno :Camera support * Olivier Adler :PPM Encoder * John Arne Birkeland :PPM Encoder * Adam M Rivera :Auto Compass Declination * Marco Robustini :Alpha testing * Angel Fernandez :Alpha testing * Robert Lefebvre :Heli Support & LEDs * Amilcar Lucas :mount and camera configuration * Gregory Fletcher :mount orientation math * * And much more so PLEASE PM me on DIYDRONES to add your contribution to the List * * Requires modified "mrelax" version of Arduino, which can be found here: * http://code.google.com/p/ardupilot-mega/downloads/list * */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// // AVR runtime #include #include #include #include // Libraries #include #include #include #include // ArduPilot Mega RC Library #include // ArduPilot GPS library #include // Arduino I2C lib #include // Arduino SPI lib #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include #include #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega Inertial Sensor (accel & gyro) Library #include // ArduPilot Mega IMU Library #include // Parent header of Timer // (only included for makefile libpath to work) #include // TimerProcess is the scheduler for MPU6000 reads. #include #include // PI library #include // PID library #include // RC Channel Library #include // AP Motors library #include // AP Motors library for Quad #include // AP Motors library for Tri #include // AP Motors library for Hexa #include // AP Motors library for Y6 #include // AP Motors library for Octa #include // AP Motors library for OctaQuad #include // AP Motors library for Heli #include // AP Motors library for Heli #include // Range finder library #include // Optical Flow library #include // Filter library #include // Mode Filter from Filter library #include // Mode Filter from Filter library #include // GPS Lead filter #include // APM relay #include // Photo or video camera #include // Camera/Antenna mount #include // needed for AHRS build #include // Configuration #include "defines.h" #include "config.h" #include "config_channels.h" #include // MAVLink GCS definitions // Local modules #include "Parameters.h" #include "GCS.h" #include // ArduPilot Mega Declination Helper Library // Limits library - Puts limits on the vehicle, and takes recovery actions #include #include // a limits library module #include // a limits library module #include // a limits library module //////////////////////////////////////////////////////////////////////////////// // Serial ports //////////////////////////////////////////////////////////////////////////////// // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. // FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port FastSerialPort3(Serial3); // Telemetry port // this sets up the parameter table, and sets the default values. This // must be the first AP_Param variable declared to ensure its // constructor runs before the constructors of the other AP_Param // variables AP_Param param_loader(var_info, WP_START_BYTE); Arduino_Mega_ISR_Registry isr_registry; //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; //////////////////////////////////////////////////////////////////////////////// // prototypes static void update_events(void); //////////////////////////////////////////////////////////////////////////////// // RC Hardware //////////////////////////////////////////////////////////////////////////////// #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 APM_RC_APM2 APM_RC; #else APM_RC_APM1 APM_RC; #endif //////////////////////////////////////////////////////////////////////////////// // Dataflash //////////////////////////////////////////////////////////////////////////////// #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 DataFlash_APM2 DataFlash; #else DataFlash_APM1 DataFlash; #endif //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED // real sensors #if CONFIG_ADC == ENABLED AP_ADC_ADS7844 adc; #endif #ifdef DESKTOP_BUILD AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; #include SITL sitl; #else #if CONFIG_BARO == AP_BARO_BMP085 # if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_Baro_BMP085 barometer(true); # else AP_Baro_BMP085 barometer(false); # endif #elif CONFIG_BARO == AP_BARO_MS5611 AP_Baro_MS5611 barometer; #endif AP_Compass_HMC5843 compass; #endif #ifdef OPTFLOW_ENABLED #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_OpticalFlow_ADNS3080_APM2 optflow(OPTFLOW_CS_PIN); #else AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #endif #else AP_OpticalFlow optflow; #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 AP_GPS_MTK16 g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(NULL); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL #if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN ); #else AP_InertialSensor_Oilpan ins(&adc); #endif AP_IMU_INS imu(&ins); // we don't want to use gps for yaw correction on ArduCopter, so pass // a NULL GPS object pointer static GPS *g_gps_null; #if DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 AP_AHRS_MPU6000 ahrs(&imu, g_gps, &ins); // only works with APM2 #else AP_AHRS_DCM ahrs(&imu, g_gps); #endif AP_TimerProcess timer_scheduler; #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_ADC_HIL adc; AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver(NULL); AP_IMU_Shim imu; AP_AHRS_DCM ahrs(&imu, g_gps); AP_PeriodicProcessStub timer_scheduler; AP_InertialSensor_Stub ins; static int32_t gps_base_alt; #elif HIL_MODE == HIL_MODE_ATTITUDE AP_ADC_HIL adc; AP_IMU_Shim imu; // never used AP_AHRS_HIL ahrs(&imu, g_gps); AP_GPS_HIL g_gps_driver(NULL); AP_Compass_HIL compass; // never used AP_Baro_BMP085_HIL barometer; AP_InertialSensor_Stub ins; AP_PeriodicProcessStub timer_scheduler; #ifdef OPTFLOW_ENABLED AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN); #endif #ifdef DESKTOP_BUILD #include SITL sitl; #endif static int32_t gps_base_alt; #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// GCS_MAVLINK gcs0; GCS_MAVLINK gcs3; //////////////////////////////////////////////////////////////////////////////// // SONAR selection //////////////////////////////////////////////////////////////////////////////// // ModeFilterInt16_Size5 sonar_mode_filter(2); #if CONFIG_SONAR == ENABLED #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25); #elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN); #endif AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter); #endif // agmatthews USERHOOKS //////////////////////////////////////////////////////////////////////////////// // User variables //////////////////////////////////////////////////////////////////////////////// #ifdef USERHOOK_VARIABLES #include USERHOOK_VARIABLES #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// static const char* flight_mode_strings[] = { "STABILIZE", // 0 "ACRO", // 1 "ALT_HOLD", // 2 "AUTO", // 3 "GUIDED", // 4 "LOITER", // 5 "RTL", // 6 "CIRCLE", // 7 "POSITION", // 8 "LAND", // 9 "OF_LOITER", // 10 "TOY_M", // 11 "TOY_A" }; // 12 THOR Added for additional Fligt mode /* Radio values * Channel assignments * 1 Ailerons (rudder if no ailerons) * 2 Elevator * 3 Throttle * 4 Rudder (if we have ailerons) * 5 Mode - 3 position switch * 6 User assignable * 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) * 8 TBD * Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. * See libraries/RC_Channel/RC_Channel_aux.h for more information */ //Documentation of GLobals: //////////////////////////////////////////////////////////////////////////////// // The GPS based velocity calculated by offsetting the Latitude and Longitude // updated after GPS read - 5-10hz static int16_t x_actual_speed; static int16_t y_actual_speed; // The difference between the desired rate of travel and the actual rate of travel // updated after GPS read - 5-10hz static int16_t x_rate_error; static int16_t y_rate_error; //////////////////////////////////////////////////////////////////////////////// // Radio //////////////////////////////////////////////////////////////////////////////// // This is the state of the flight control system // There are multiple states defined such as STABILIZE, ACRO, static int8_t control_mode = STABILIZE; // This is the state of simple mode. // Set in the control_mode.pde file when the control switch is read static bool do_simple = false; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch static byte oldSwitchPosition; //////////////////////////////////////////////////////////////////////////////// // Motor Output //////////////////////////////////////////////////////////////////////////////// // This is the array of PWM values being sent to the motors //static int16_t motor_out[11]; // This is the array of PWM values being sent to the motors that has been lightly filtered with a simple LPF // This was added to try and deal with biger motors //static int16_t motor_filtered[11]; #if FRAME_CONFIG == QUAD_FRAME #define MOTOR_CLASS AP_MotorsQuad #endif #if FRAME_CONFIG == TRI_FRAME #define MOTOR_CLASS AP_MotorsTri #endif #if FRAME_CONFIG == HEXA_FRAME #define MOTOR_CLASS AP_MotorsHexa #endif #if FRAME_CONFIG == Y6_FRAME #define MOTOR_CLASS AP_MotorsY6 #endif #if FRAME_CONFIG == OCTA_FRAME #define MOTOR_CLASS AP_MotorsOcta #endif #if FRAME_CONFIG == OCTA_QUAD_FRAME #define MOTOR_CLASS AP_MotorsOctaQuad #endif #if FRAME_CONFIG == HELI_FRAME #define MOTOR_CLASS AP_MotorsHeli #endif #if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments #if INSTANT_PWM == 1 MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4, AP_MOTORS_SPEED_INSTANT_PWM); // this hardware definition is slightly bad because it assumes APM_HARDWARE_APM2 == AP_MOTORS_APM2 #else MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4); #endif #elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing #if INSTANT_PWM == 1 MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7, AP_MOTORS_SPEED_INSTANT_PWM); // this hardware definition is slightly bad because it assumes APM_HARDWARE_APM2 == AP_MOTORS_APM2 #else MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7); #endif #else #if INSTANT_PWM == 1 MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, AP_MOTORS_SPEED_INSTANT_PWM); // this hardware definition is slightly bad because it assumes APM_HARDWARE_APM2 == AP_MOTORS_APM2 #else MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4); #endif #endif //////////////////////////////////////////////////////////////////////////////// // Mavlink/HIL control //////////////////////////////////////////////////////////////////////////////// // Used to track the GCS based control input // Allow override of RC channel values for HIL static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; // Status flag that tracks whether we are under GCS control static bool rc_override_active = false; // Status flag that tracks whether we are under GCS control static uint32_t rc_override_fs_timer; //////////////////////////////////////////////////////////////////////////////// // Failsafe //////////////////////////////////////////////////////////////////////////////// // A status flag for the failsafe state // did our throttle dip below the failsafe value? static boolean failsafe; //////////////////////////////////////////////////////////////////////////////// // PIDs //////////////////////////////////////////////////////////////////////////////// // This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates // and not the adjusted omega rates, but the name is stuck static Vector3f omega; // This is used to hold radio tuning values for in-flight CH6 tuning float tuning_value; // This will keep track of the percent of roll or pitch the user is applying float roll_scale_d, pitch_scale_d; //////////////////////////////////////////////////////////////////////////////// // LED output //////////////////////////////////////////////////////////////////////////////// // status of LED based on the motor_armed variable // Flashing indicates we are not armed // Solid indicates Armed state static boolean motor_light; // Flashing indicates we are reading the GPS Strings // Solid indicates we have full 3D lock and can navigate static boolean GPS_light; // This is current status for the LED lights state machine // setting this value changes the output of the LEDs static byte led_mode = NORMAL_LEDS; // Blinking indicates GPS status static byte copter_leds_GPS_blink = 0; // Blinking indicates battery status static byte copter_leds_motor_blink = 0; // Navigation confirmation blinks static int8_t copter_leds_nav_blink = 0; //////////////////////////////////////////////////////////////////////////////// // GPS variables //////////////////////////////////////////////////////////////////////////////// // This is used to scale GPS values for EEPROM storage // 10^7 times Decimal GPS means 1 == 1cm // This approximation makes calculations integer and it's easy to read static const float t7 = 10000000.0; // We use atan2 and other trig techniques to calaculate angles // We need to scale the longitude up to make these calcs work // to account for decreasing distance between lines of longitude away from the equator static float scaleLongUp = 1; // Sometimes we need to remove the scaling for distance calcs static float scaleLongDown = 1; //////////////////////////////////////////////////////////////////////////////// // Mavlink specific //////////////////////////////////////////////////////////////////////////////// // Used by Mavlink for unknow reasons static const float radius_of_earth = 6378100; // meters // Used by Mavlink for unknow reasons static const float gravity = 9.81; // meters/ sec^2 // Unions for getting byte values union float_int { int32_t int_value; float float_value; } float_int; //////////////////////////////////////////////////////////////////////////////// // Location & Navigation //////////////////////////////////////////////////////////////////////////////// // Status flag indicating we have data that can be used to navigate // Set by a GPS read with 3D fix, or an optical flow read static bool nav_ok; // This is the angle from the copter to the "next_WP" location in degrees * 100 static int32_t target_bearing; // Status of the Waypoint tracking mode. Options include: // NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE static byte wp_control; // Register containing the index of the current navigation command in the mission script static int16_t command_nav_index; // Register containing the index of the previous navigation command in the mission script // Used to manage the execution of conditional commands static uint8_t prev_nav_index; // Register containing the index of the current conditional command in the mission script static uint8_t command_cond_index; // Used to track the required WP navigation information // options include // NAV_ALTITUDE - have we reached the desired altitude? // NAV_LOCATION - have we reached the desired location? // NAV_DELAY - have we waited at the waypoint the desired time? static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints // used to limit the speed ramp up of WP navigation // Acceleration is limited to .5m/s/s static int16_t waypoint_speed_gov; // Used to track how many cm we are from the "next_WP" location static int32_t long_error, lat_error; // Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s static boolean loiter_override; static int16_t waypoint_radius; static int16_t control_roll; static int16_t control_pitch; //////////////////////////////////////////////////////////////////////////////// // Orientation //////////////////////////////////////////////////////////////////////////////// // Convienience accessors for commonly used trig functions. These values are generated // by the DCM through a few simple equations. They are used throughout the code where cos and sin // would normally be used. // The cos values are defaulted to 1 to get a decent initial value for a level state static float cos_roll_x = 1; static float cos_pitch_x = 1; static float cos_yaw_x = 1; static float sin_yaw_y; //////////////////////////////////////////////////////////////////////////////// // SIMPLE Mode //////////////////////////////////////////////////////////////////////////////// // Used to track the orientation of the copter for Simple mode. This value is reset at each arming // or in SuperSimple mode when the copter leaves a 20m radius from home. static int32_t initial_simple_bearing; //////////////////////////////////////////////////////////////////////////////// // ACRO Mode //////////////////////////////////////////////////////////////////////////////// // Used to control Axis lock int32_t roll_axis; int32_t pitch_axis; // Filters AP_LeadFilter xLeadFilter; // Long GPS lag filter AP_LeadFilter yLeadFilter; // Lat GPS lag filter AverageFilterInt32_Size3 roll_rate_d_filter; // filtered acceleration AverageFilterInt32_Size3 pitch_rate_d_filter; // filtered pitch acceleration // Barometer filter AverageFilterInt32_Size5 baro_filter; // filtered pitch acceleration //////////////////////////////////////////////////////////////////////////////// // Circle Mode / Loiter control //////////////////////////////////////////////////////////////////////////////// // used to determin the desired location in Circle mode // increments at circle_rate / second static float circle_angle; // used to control the speed of Circle mode // units are in radians, default is 5° per second static const float circle_rate = 0.0872664625; // used to track the delat in Circle Mode static int32_t old_target_bearing; // deg : how many times to circle * 360 for Loiter/Circle Mission command static int16_t loiter_total; // deg : how far we have turned around a waypoint static int16_t loiter_sum; // How long we should stay in Loiter Mode for mission scripting static uint16_t loiter_time_max; // How long have we been loitering - The start time in millis static uint32_t loiter_time; // The synthetic location created to make the copter do circles around a WP static struct Location circle_WP; //////////////////////////////////////////////////////////////////////////////// // CH7 control //////////////////////////////////////////////////////////////////////////////// // Used to enable Jose's flip code // when true the Roll/Pitch/Throttle control is sent to the flip state machine static bool do_flip = false; // Used to track the CH7 toggle state. // When CH7 goes LOW PWM from HIGH PWM, this value will have been set true // Allows advanced functionality to know when to execute static boolean CH7_flag; // This register tracks the current Mission Command index when writing // a mission using CH7 in flight static int8_t CH7_wp_index; //////////////////////////////////////////////////////////////////////////////// // Battery Sensors //////////////////////////////////////////////////////////////////////////////// // Battery Voltage of battery, initialized above threshold for filter static float battery_voltage1 = LOW_VOLTAGE * 1.05; // refers to the instant amp draw – based on an Attopilot Current sensor static float current_amps1; // refers to the total amps drawn – based on an Attopilot Current sensor static float current_total1; // Used to track if the battery is low - LED output flashes when the batt is low static bool low_batt = false; //////////////////////////////////////////////////////////////////////////////// // Altitude //////////////////////////////////////////////////////////////////////////////// // The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP static int32_t altitude_error; // The cm/s we are moving up or down based on sensor data - Positive = UP static int16_t climb_rate_actual; // Used to dither our climb_rate over 50hz static int16_t climb_rate_error; // The cm/s we are moving up or down based on filtered data - Positive = UP static int16_t climb_rate; // The altitude as reported by Sonar in cm – Values are 20 to 700 generally. static int16_t sonar_alt; // The climb_rate as reported by sonar in cm/s static int16_t sonar_rate; // The altitude as reported by Baro in cm – Values can be quite high static int32_t baro_alt; // The climb_rate as reported by Baro in cm/s static int16_t baro_rate; // used to switch out of Manual Boost static uint8_t reset_throttle_counter; // used to track when to read sensors vs estimate alt static boolean alt_sensor_flag; static int16_t saved_toy_throttle; //////////////////////////////////////////////////////////////////////////////// // flight modes //////////////////////////////////////////////////////////////////////////////// // Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes // Each Flight mode is a unique combination of these modes // // The current desired control scheme for Yaw static byte yaw_mode; // The current desired control scheme for roll and pitch / navigation static byte roll_pitch_mode; // The current desired control scheme for altitude hold static byte throttle_mode; //////////////////////////////////////////////////////////////////////////////// // flight specific //////////////////////////////////////////////////////////////////////////////// // Flag for monitoring the status of flight // We must be in the air with throttle for 5 seconds before this flag is true // This flag is reset when we are in a manual throttle mode with 0 throttle or disarmed static boolean takeoff_complete; // Used to see if we have landed and if we should shut our engines - not fully implemented static boolean land_complete = true; // An additional throttle added to keep the copter at the same altitude when banking static int16_t angle_boost; // Push copter down for clean landing static int16_t landing_boost; // for controlling the landing throttle curve //verifies landings static int16_t ground_detector; // have we reached our desired altitude brefore heading home? static bool rtl_reached_alt; //////////////////////////////////////////////////////////////////////////////// // Navigation general //////////////////////////////////////////////////////////////////////////////// // The location of the copter in relation to home, updated every GPS read static int32_t home_to_copter_bearing; // distance between plane and home in cm static int32_t home_distance; // distance between plane and next_WP in cm // is not static because AP_Camera uses it int32_t wp_distance; //////////////////////////////////////////////////////////////////////////////// // 3D Location vectors //////////////////////////////////////////////////////////////////////////////// // home location is stored when we have a good GPS lock and arm the copter // Can be reset each the copter is re-armed static struct Location home; // Flag for if we have g_gps lock and have set the home location static boolean home_is_set; // Current location of the copter static struct Location current_loc; // lead filtered loc static struct Location filtered_loc; // Next WP is the desired location of the copter - the next waypoint or loiter location static struct Location next_WP; // Prev WP is used to get the optimum path from one WP to the next static struct Location prev_WP; // Holds the current loaded command from the EEPROM for navigation static struct Location command_nav_queue; // Holds the current loaded command from the EEPROM for conditional scripts static struct Location command_cond_queue; // Holds the current loaded command from the EEPROM for guided mode static struct Location guided_WP; //////////////////////////////////////////////////////////////////////////////// // Crosstrack //////////////////////////////////////////////////////////////////////////////// // deg * 100, The original angle to the next_WP when the next_WP was set // Also used to check when we pass a WP static int32_t original_target_bearing; // The amount of angle correction applied to target_bearing to bring the copter back on its optimum path static int16_t crosstrack_error; // should we take the waypoint quickly or slow down? static bool fast_corner; //////////////////////////////////////////////////////////////////////////////// // Navigation Roll/Pitch functions //////////////////////////////////////////////////////////////////////////////// // all angles are deg * 100 : target yaw angle // The Commanded ROll from the autopilot. static int32_t nav_roll; // The Commanded pitch from the autopilot. negative Pitch means go forward. static int32_t nav_pitch; // The desired bank towards North (Positive) or South (Negative) static int32_t auto_roll; static int32_t auto_pitch; // Don't be fooled by the fact that Pitch is reversed from Roll in its sign! static int16_t nav_lat; // The desired bank towards East (Positive) or West (Negative) static int16_t nav_lon; // The Commanded ROll from the autopilot based on optical flow sensor. static int32_t of_roll; // The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward. static int32_t of_pitch; static bool slow_wp = false; //////////////////////////////////////////////////////////////////////////////// // Navigation Throttle control //////////////////////////////////////////////////////////////////////////////// // The Commanded Throttle from the autopilot. static int16_t nav_throttle; // 0-1000 for throttle control // This is a simple counter to track the amount of throttle used during flight // This could be useful later in determining and debuging current usage and predicting battery life static uint32_t throttle_integrator; //////////////////////////////////////////////////////////////////////////////// // Climb rate control //////////////////////////////////////////////////////////////////////////////// // Time when we intiated command in millis - used for controlling decent rate // Used to track the altitude offset for climbrate control static int8_t alt_change_flag; //////////////////////////////////////////////////////////////////////////////// // Navigation Yaw control //////////////////////////////////////////////////////////////////////////////// // The Commanded Yaw from the autopilot. static int32_t nav_yaw; // A speed governer for Yaw control - limits the rate the quad can be turned by the autopilot static int32_t auto_yaw; // Used to manage the Yaw hold capabilities - static bool yaw_stopped; static uint8_t yaw_timer; // Options include: no tracking, point at next wp, or at a target static byte yaw_tracking = MAV_ROI_WPNEXT; // In AP Mission scripting we have a fine level of control for Yaw // This is our initial angle for relative Yaw movements static int32_t command_yaw_start; // Timer values used to control the speed of Yaw movements static uint32_t command_yaw_start_time; static uint16_t command_yaw_time; // how long we are turning static int32_t command_yaw_end; // what angle are we trying to be // how many degrees will we turn static int32_t command_yaw_delta; // Deg/s we should turn static int16_t command_yaw_speed; // Direction we will turn – 1 = CW, 0 or -1 = CCW static byte command_yaw_dir; // Direction we will turn – 1 = relative, 0 = Absolute static byte command_yaw_relative; // Yaw will point at this location if yaw_tracking is set to MAV_ROI_LOCATION static struct Location target_WP; //////////////////////////////////////////////////////////////////////////////// // Repeat Mission Scripting Command //////////////////////////////////////////////////////////////////////////////// // The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc static byte event_id; // Used to manage the timimng of repeating events static uint32_t event_timer; // How long to delay the next firing of event in millis static uint16_t event_delay; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice static int16_t event_repeat; // per command value, such as PWM for servos static int16_t event_value; // the stored value used to undo commands - such as original PWM command static int16_t event_undo_value; //////////////////////////////////////////////////////////////////////////////// // Delay Mission Scripting Command //////////////////////////////////////////////////////////////////////////////// static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) static uint32_t condition_start; //////////////////////////////////////////////////////////////////////////////// // IMU variables //////////////////////////////////////////////////////////////////////////////// // Integration time for the gyros (DCM algorithm) // Updated with the fast loop static float G_Dt = 0.02; //////////////////////////////////////////////////////////////////////////////// // Inertial Navigation //////////////////////////////////////////////////////////////////////////////// #if INERTIAL_NAV == ENABLED // The rotated accelerometer values static Vector3f accels_velocity; static Vector3f accels_position; // accels rotated to world frame static Vector3f accels_rotated; //static Vector3f position_error; // error correction static Vector3f speed_error; // Manage accel drift //static float z_offset; //static Vector3f accels_scale; #endif //////////////////////////////////////////////////////////////////////////////// // Performance monitoring //////////////////////////////////////////////////////////////////////////////// // Used to manage the rate of performance logging messages static int16_t perf_mon_counter; // The number of GPS fixes we have had static int16_t gps_fix_count; // gps_watchdog checks for bad reads and if we miss 12 in a row, we stop navigating // by lowering nav_lat and navlon to 0 gradually static byte gps_watchdog; // System Timers // -------------- // Time in microseconds of main control loop static uint32_t fast_loopTimer; // Time in microseconds of 50hz control loop static uint32_t fiftyhz_loopTimer = 0; // Counters for branching from 10 hz control loop static byte medium_loopCounter; // Counters for branching from 3 1/3hz control loop static byte slow_loopCounter; // Counters for branching at 1 hz static byte counter_one_herz; // used to track the elapsed time between GPS reads static uint32_t nav_loopTimer; // Delta Time in milliseconds for navigation computations, updated with every good GPS read static float dTnav; // Counters for branching from 4 minute control loop used to save Compass offsets static int16_t superslow_loopCounter; // Loiter timer - Records how long we have been in loiter static uint32_t loiter_timer; // disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight static uint8_t auto_disarming_counter; // prevents duplicate GPS messages from entering system static uint32_t last_gps_time; // Tracks if GPS is enabled based on statup routine // If we do not detect GPS at startup, we stop trying and assume GPS is not connected static bool GPS_enabled = false; // Set true if we have new PWM data to act on from the Radio static bool new_radio_frame; // Used to auto exit the in-flight leveler static int16_t auto_level_counter; // Reference to the AP relay object - APM1 only AP_Relay relay; // APM2 only #if USB_MUX_PIN > 0 static bool usb_connected; #endif // Camera/Antenna mount tracking and stabilisation stuff // -------------------------------------- #if MOUNT == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0); #endif #if MOUNT2 == ENABLED // current_loc uses the baro/gps soloution for altitude rather than gps only. // mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1); #endif #if CAMERA == ENABLED //pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82) #endif //////////////////////////////////////////////////////////////////////////////// // Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters //////////////////////////////////////////////////////////////////////////////// #ifdef AP_LIMITS AP_Limits limits; AP_Limit_GPSLock gpslock_limit(g_gps); AP_Limit_Geofence geofence_limit(FENCE_START_BYTE, FENCE_WP_SIZE, MAX_FENCEPOINTS, g_gps, &home, ¤t_loc); AP_Limit_Altitude altitude_limit(¤t_loc); #endif //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// void setup() { memcheck_init(); init_ardupilot(); } void loop() { uint32_t timer = micros(); static bool run_50hz_loop = false; uint16_t num_samples; // We want this to execute fast // ---------------------------- num_samples = imu.num_samples_available(); if (num_samples >= NUM_IMU_SAMPLES_FOR_100HZ) { #if DEBUG_FAST_LOOP == ENABLED Log_Write_Data(50, (int32_t)(timer - fast_loopTimer)); #endif //PORTK |= B00010000; G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops fast_loopTimer = timer; // Execute the fast loop // --------------------- fast_loop();//// // run the 50hz loop 1/2 the time run_50hz_loop = !run_50hz_loop; if( run_50hz_loop ) { #if DEBUG_MED_LOOP == ENABLED Log_Write_Data(51, (int32_t)(timer - fiftyhz_loopTimer)); #endif // store the micros for the 50 hz timer fiftyhz_loopTimer = timer; // port manipulation for external timing of main loops //PORTK |= B01000000; // reads all of the necessary trig functions for cameras, throttle, etc. // -------------------------------------------------------------------- update_trig(); // Rotate the Nav_lon and nav_lat vectors based on Yaw // --------------------------------------------------- calc_loiter_pitch_roll(); // check for new GPS messages // -------------------------- update_GPS(); // perform 10hz tasks // ------------------ medium_loop(); // Stuff to run at full 50hz, but after the med loops // -------------------------------------------------- fifty_hz_loop(); counter_one_herz++; // trgger our 1 hz loop if(counter_one_herz >= 50) { super_slow_loop(); counter_one_herz = 0; } perf_mon_counter++; if (perf_mon_counter > 600 ) { if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); gps_fix_count = 0; perf_mon_counter = 0; } //PORTK &= B10111111; } } else { #ifdef DESKTOP_BUILD usleep(1000); #endif if (num_samples < NUM_IMU_SAMPLES_FOR_100HZ-1) { // we have some spare cycles available // less than 20ms has passed. We have at least one millisecond // of free time. The most useful thing to do with that time is // to accumulate some sensor readings, specifically the // compass, which is often very noisy but is not interrupt // driven, so it can't accumulate readings by itself if (g.compass_enabled) { compass.accumulate(); } } } // port manipulation for external timing of main loops //PORTK &= B11101111; } // PORTK |= B01000000; // PORTK &= B10111111; // Main loop - 100hz static void fast_loop() { // try to send any deferred messages if the serial port now has // some space available gcs_send_message(MSG_RETRY_DEFERRED); // Read radio // ---------- read_radio(); // IMU DCM Algorithm // -------------------- read_AHRS(); // Inertial Nav // -------------------- #if INERTIAL_NAV == ENABLED calc_inertia(); #endif // custom code/exceptions for flight modes // --------------------------------------- update_yaw_mode(); update_roll_pitch_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); // agmatthews - USERHOOKS #ifdef USERHOOK_FASTLOOP USERHOOK_FASTLOOP #endif } static void medium_loop() { // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS and Compass //----------------------------------------- case 0: medium_loopCounter++; #if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode if(g.compass_enabled) { if (compass.read()) { compass.null_offsets(); } } #endif // auto_trim, uses an auto_level algorithm auto_trim(); // record throttle output // ------------------------------ throttle_integrator += g.rc_3.servo_out; break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; // calculate the copter's desired bearing and WP distance // ------------------------------------------------------ if(nav_ok) { // clear nav flag nav_ok = false; // calculate distance, angles to target navigate(); // update flight control system update_navigation(); // update log if (g.log_bitmask & MASK_LOG_NTUN && motors.armed()) { Log_Write_Nav_Tuning(); } } break; // command processing //------------------- case 2: medium_loopCounter++; if(control_mode == TOY_A) { update_toy_throttle(); if(throttle_mode == THROTTLE_AUTO) { update_toy_altitude(); } } alt_sensor_flag = true; break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; // perform next command // -------------------- if(control_mode == AUTO) { if(home_is_set == true && g.command_total > 1) { update_commands(); } } if(motors.armed()) { if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_MOTORS) Log_Write_Motors(); } break; // This case controls the slow loop //--------------------------------- case 4: medium_loopCounter = 0; if (g.battery_monitoring != 0) { read_battery(); } // Accel trims = hold > 2 seconds // Throttle cruise = switch less than 1 second // -------------------------------------------- read_trim_switch(); // Check for engine arming // ----------------------- arm_motors(); // Do an extra baro read for Temp sensing // --------------------------------------- #if HIL_MODE != HIL_MODE_ATTITUDE barometer.read(); #endif // agmatthews - USERHOOKS #ifdef USERHOOK_MEDIUMLOOP USERHOOK_MEDIUMLOOP #endif #if COPTER_LEDS == ENABLED update_copter_leds(); #endif slow_loop(); break; default: // this is just a catch all // ------------------------ medium_loopCounter = 0; break; } } // stuff that happens at 50 hz // --------------------------- static void fifty_hz_loop() { // read altitude sensors or estimate altitude // ------------------------------------------ update_altitude_est(); // Update the throttle ouput // ------------------------- update_throttle_mode(); // Read Sonar // ---------- # if CONFIG_SONAR == ENABLED if(g.sonar_enabled) { sonar_alt = sonar.read(); } #endif #if TOY_EDF == ENABLED edf_toy(); #endif // syncronise optical flow reads with altitude reads #ifdef OPTFLOW_ENABLED if(g.optflow_enabled) { update_optical_flow(); } #endif #ifdef USERHOOK_50HZLOOP USERHOOK_50HZLOOP #endif #if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME // HIL for a copter needs very fast update of the servo values gcs_send_message(MSG_RADIO_OUT); #endif #if MOUNT == ENABLED // update camera mount's position camera_mount.update_mount_position(); #endif #if MOUNT2 == ENABLED // update camera mount's position camera_mount2.update_mount_position(); #endif #if CAMERA == ENABLED g.camera.trigger_pic_cleanup(); #endif # if HIL_MODE == HIL_MODE_DISABLED if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_RAW && motors.armed()) Log_Write_Raw(); #endif // kick the GCS to process uplink data gcs_update(); gcs_data_stream_send(); } static void slow_loop() { #if AP_LIMITS == ENABLED // Run the AP_Limits main loop limits_loop(); #endif // AP_LIMITS_ENABLED // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter) { case 0: slow_loopCounter++; superslow_loopCounter++; if(superslow_loopCounter > 1200) { #if HIL_MODE != HIL_MODE_ATTITUDE if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) { compass.save_offsets(); superslow_loopCounter = 0; } #endif } // check the user hasn't updated the frame orientation if( !motors.armed() ) { motors.set_frame_orientation(g.frame_orientation); } break; case 1: slow_loopCounter++; // Read 3-position switch on radio // ------------------------------- read_control_switch(); #if MOUNT == ENABLED update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11); #endif enable_aux_servos(); #if MOUNT == ENABLED camera_mount.update_mount_type(); #endif #if MOUNT2 == ENABLED camera_mount2.update_mount_type(); #endif // agmatthews - USERHOOKS #ifdef USERHOOK_SLOWLOOP USERHOOK_SLOWLOOP #endif break; case 2: slow_loopCounter = 0; update_events(); // blink if we are armed update_lights(); if(g.radio_tuning > 0) tuning(); #if USB_MUX_PIN > 0 check_usb_mux(); #endif break; default: slow_loopCounter = 0; break; } } #define AUTO_DISARMING_DELAY 25 // 1Hz loop static void super_slow_loop() { if (g.log_bitmask & MASK_LOG_CUR && motors.armed()) Log_Write_Current(); #if 0 //CENTER_THROTTLE == 1 // recalibrate the throttle_cruise to center on the sticks g.rc_3.set_range((g.throttle_cruise - (MAXIMUM_THROTTLE - g.throttle_cruise)), MAXIMUM_THROTTLE); g.rc_3.set_range_out(0,1000); #endif // this function disarms the copter if it has been sitting on the ground for any moment of time greater than 25 seconds // but only of the control mode is manual if((control_mode <= ACRO) && (g.rc_3.control_in == 0)) { auto_disarming_counter++; if(auto_disarming_counter == AUTO_DISARMING_DELAY) { init_disarm_motors(); }else if (auto_disarming_counter > AUTO_DISARMING_DELAY) { auto_disarming_counter = AUTO_DISARMING_DELAY + 1; } }else{ auto_disarming_counter = 0; } gcs_send_message(MSG_HEARTBEAT); // agmatthews - USERHOOKS #ifdef USERHOOK_SUPERSLOWLOOP USERHOOK_SUPERSLOWLOOP #endif /* * //Serial.printf("alt %d, next.alt %d, alt_err: %d, cruise: %d, Alt_I:%1.2f, wp_dist %d, tar_bear %d, home_d %d, homebear %d\n", * current_loc.alt, * next_WP.alt, * altitude_error, * g.throttle_cruise.get(), * g.pi_alt_hold.get_integrator(), * wp_distance, * target_bearing, * home_distance, * home_to_copter_bearing); */ } // updated at 10 Hz #ifdef OPTFLOW_ENABLED static void update_optical_flow(void) { static int log_counter = 0; optflow.update(); optflow.update_position(ahrs.roll, ahrs.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow // write to log log_counter++; if( log_counter >= 5 ) { log_counter = 0; if (g.log_bitmask & MASK_LOG_OPTFLOW) { Log_Write_Optflow(); } } /*if(g.optflow_enabled && current_loc.alt < 500){ * if(GPS_enabled){ * // if we have a GPS, we add some detail to the GPS * // XXX this may not ne right * current_loc.lng += optflow.vlon; * current_loc.lat += optflow.vlat; * * // some sort of error correction routine * //current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction * //current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction * }else{ * // if we do not have a GPS, use relative from 0 for lat and lon * current_loc.lng = optflow.vlon; * current_loc.lat = optflow.vlat; * } * // OK to run the nav routines * nav_ok = true; * }*/ } #endif // called at 50hz static void update_GPS(void) { // A counter that is used to grab at least 10 reads before commiting the Home location static byte ground_start_count = 10; // return immediately if GPS is not enabled if( !GPS_enabled ) { return; } g_gps->update(); update_GPS_light(); if(gps_watchdog < 30) { gps_watchdog++; }else{ // after 12 reads we guess we may have lost GPS signal, stop navigating // we have lost GPS signal for a moment. Reduce our error to avoid flyaways auto_roll >>= 1; auto_pitch >>= 1; } if (g_gps->new_data && g_gps->fix) { // clear new data flag g_gps->new_data = false; // check for duiplicate GPS messages if(last_gps_time != g_gps->time) { // look for broken GPS // --------------- gps_watchdog = 0; // OK to run the nav routines // --------------- nav_ok = true; // for performance monitoring // -------------------------- gps_fix_count++; // used to calculate speed in X and Y, iterms // ------------------------------------------ dTnav = (float)(millis() - nav_loopTimer)/ 1000.0; nav_loopTimer = millis(); // prevent runup from bad GPS // -------------------------- dTnav = min(dTnav, 1.0); if(ground_start_count > 1) { ground_start_count--; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { ground_start_count = 5; }else{ if (g.compass_enabled) { // Set compass declination automatically compass.set_initial_location(g_gps->latitude, g_gps->longitude); } // save home to eeprom (we must have a good fix to have reached this point) init_home(); ground_start_count = 0; } } current_loc.lng = g_gps->longitude; // Lon * 10^7 current_loc.lat = g_gps->latitude; // Lat * 10^7 calc_XY_velocity(); if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) { Log_Write_GPS(); } #if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode //update_altitude(); alt_sensor_flag = true; #endif } // save GPS time so we don't get duplicate reads last_gps_time = g_gps->time; } } void update_yaw_mode(void) { switch(yaw_mode) { case YAW_ACRO: g.rc_4.servo_out = get_acro_yaw(g.rc_4.control_in); return; break; // update to allow external roll/yaw mixing #if TOY_LOOKUP == TOY_EXTERNAL_MIXER case YAW_TOY: #endif case YAW_HOLD: if(g.rc_4.control_in != 0) { g.rc_4.servo_out = get_acro_yaw(g.rc_4.control_in); yaw_stopped = false; yaw_timer = 150; }else if (!yaw_stopped) { g.rc_4.servo_out = get_acro_yaw(0); yaw_timer--; if((yaw_timer == 0) || (fabs(omega.z) < .17)) { yaw_stopped = true; nav_yaw = ahrs.yaw_sensor; } }else{ // reset target yaw to current yaw if the motors are disarmed or throttle is zero // Note: we do not want to reset yaw if failsafe has been triggered even though throttle maybe zero (in fact, normally throttle is zero in failsafe) if(motors.armed() == false || ((g.rc_3.control_in == 0) && (control_mode <= ACRO) && !failsafe)) nav_yaw = ahrs.yaw_sensor; g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); } return; break; case YAW_LOOK_AT_HOME: //nav_yaw updated in update_navigation() g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); break; case YAW_AUTO: nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -60, 60); // 40 deg a second //Serial.printf("nav_yaw %d ", nav_yaw); nav_yaw = wrap_360(nav_yaw); g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); break; } } void update_roll_pitch_mode(void) { if (do_flip) { if(abs(g.rc_1.control_in) < 4000) { roll_flip(); return; }else{ // force an exit from the loop if we are not hands off sticks. do_flip = false; } } switch(roll_pitch_mode) { case ROLL_PITCH_ACRO: if(g.axis_enabled) { roll_axis += (float)g.rc_1.control_in * g.axis_lock_p; pitch_axis += (float)g.rc_2.control_in * g.axis_lock_p; roll_axis = wrap_360(roll_axis); pitch_axis = wrap_360(pitch_axis); // in this mode, nav_roll and nav_pitch = the iterm g.rc_1.servo_out = get_stabilize_roll(roll_axis); g.rc_2.servo_out = get_stabilize_pitch(pitch_axis); if (g.rc_3.control_in == 0) { roll_axis = 0; pitch_axis = 0; } }else{ // ACRO does not get SIMPLE mode ability #if FRAME_CONFIG == HELI_FRAME if (motors.flybar_mode == 1) { g.rc_1.servo_out = g.rc_1.control_in; g.rc_2.servo_out = g.rc_2.control_in; } else { g.rc_1.servo_out = get_acro_roll(g.rc_1.control_in); g.rc_2.servo_out = get_acro_pitch(g.rc_2.control_in); } #else g.rc_1.servo_out = get_acro_roll(g.rc_1.control_in); g.rc_2.servo_out = get_acro_pitch(g.rc_2.control_in); #endif } break; case ROLL_PITCH_STABLE: // apply SIMPLE mode transform if(do_simple && new_radio_frame) { update_simple_mode(); } control_roll = g.rc_1.control_in; control_pitch = g.rc_2.control_in; // in this mode, nav_roll and nav_pitch = the iterm g.rc_1.servo_out = get_stabilize_roll(control_roll); g.rc_2.servo_out = get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_AUTO: // apply SIMPLE mode transform if(do_simple && new_radio_frame) { update_simple_mode(); } // mix in user control with Nav control nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second control_roll = g.rc_1.control_mix(nav_roll); control_pitch = g.rc_2.control_mix(nav_pitch); g.rc_1.servo_out = get_stabilize_roll(control_roll); g.rc_2.servo_out = get_stabilize_pitch(control_pitch); break; case ROLL_PITCH_STABLE_OF: // apply SIMPLE mode transform if(do_simple && new_radio_frame) { update_simple_mode(); } control_roll = g.rc_1.control_in; control_pitch = g.rc_2.control_in; // mix in user control with optical flow g.rc_1.servo_out = get_stabilize_roll(get_of_roll(control_roll)); g.rc_2.servo_out = get_stabilize_pitch(get_of_pitch(control_pitch)); break; // THOR // a call out to the main toy logic case ROLL_PITCH_TOY: roll_pitch_toy(); break; } if(g.rc_3.control_in == 0 && control_mode <= ACRO) { reset_rate_I(); reset_stability_I(); } //if(takeoff_complete == false){ // reset these I terms to prevent awkward tipping on takeoff //reset_rate_I(); //reset_stability_I(); //} if(new_radio_frame) { // clear new radio frame info new_radio_frame = false; // These values can be used to scale the PID gains // This allows for a simple gain scheduling implementation roll_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_1.control_in); roll_scale_d = (1 - (roll_scale_d / 4500.0)); roll_scale_d = constrain(roll_scale_d, 0, 1) * g.stabilize_d; pitch_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_2.control_in); pitch_scale_d = (1 - (pitch_scale_d / 4500.0)); pitch_scale_d = constrain(pitch_scale_d, 0, 1) * g.stabilize_d; } } // new radio frame is used to make sure we only call this at 50hz void update_simple_mode(void) { static byte simple_counter = 0; // State machine counter for Simple Mode static float simple_sin_y=0, simple_cos_x=0; // used to manage state machine // which improves speed of function simple_counter++; int16_t delta = wrap_360(ahrs.yaw_sensor - initial_simple_bearing)/100; if (simple_counter == 1) { // roll simple_cos_x = sin(radians(90 - delta)); }else if (simple_counter > 2) { // pitch simple_sin_y = cos(radians(90 - delta)); simple_counter = 0; } // Rotate input by the initial bearing int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y; int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x); g.rc_1.control_in = _roll; g.rc_2.control_in = _pitch; } #define THROTTLE_FILTER_SIZE 2 // 50 hz update rate // controls all throttle behavior void update_throttle_mode(void) { if(do_flip) // this is pretty bad but needed to flip in AP modes. return; int16_t throttle_out; #if AUTO_THROTTLE_HOLD != 0 static float throttle_avg = 0; // this is initialised to g.throttle_cruise later #endif #if FRAME_CONFIG != HELI_FRAME // calculate angle boost if(throttle_mode == THROTTLE_MANUAL) { angle_boost = get_angle_boost(g.rc_3.control_in); }else{ angle_boost = get_angle_boost(g.throttle_cruise); } #endif switch(throttle_mode) { case THROTTLE_MANUAL: if (g.rc_3.control_in > 0) { #if FRAME_CONFIG == HELI_FRAME g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in); #else if (control_mode == ACRO) { g.rc_3.servo_out = g.rc_3.control_in; }else{ g.rc_3.servo_out = g.rc_3.control_in + angle_boost; } #endif #if AUTO_THROTTLE_HOLD != 0 // ensure throttle_avg has been initialised if( throttle_avg == 0 ) { throttle_avg = g.throttle_cruise; } // calc average throttle if ((g.rc_3.control_in > g.throttle_min) && abs(climb_rate) < 60) { throttle_avg = throttle_avg * .99 + (float)g.rc_3.control_in * .01; g.throttle_cruise = throttle_avg; } #endif if (takeoff_complete == false && motors.armed()) { if (g.rc_3.control_in > g.throttle_cruise) { // we must be in the air by now takeoff_complete = true; } } }else{ // make sure we also request 0 throttle out // so the props stop ... properly // ---------------------------------------- g.rc_3.servo_out = 0; } break; case THROTTLE_HOLD: // allow interactive changing of atitude /* if(g.rc_3.control_in < 200) { reset_throttle_counter = 150; nav_throttle = get_throttle_rate(-120); g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; break; }else if (g.rc_3.control_in > 800) { reset_throttle_counter = 50; nav_throttle = get_throttle_rate(180); g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; break; } */ if(g.rc_3.radio_in < (g.rc_3.radio_min + 200)){ int16_t _rate = 120 - (((g.rc_3.radio_in - g.rc_3.radio_min) * 12) / 20); reset_throttle_counter = 150; nav_throttle = get_throttle_rate(-_rate); g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; break; }else if(g.rc_3.radio_in > (g.rc_3.radio_max - 200)){ int16_t _rate = 180 - ((g.rc_3.radio_max - g.rc_3.radio_in) * 18) / 20; reset_throttle_counter = 150; nav_throttle = get_throttle_rate(_rate); g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; break; } // allow 1 second of slow down after pilot moves throttle back into deadzone if(reset_throttle_counter > 0) { reset_throttle_counter--; // if 1 second has passed set the target altitude to the current altitude if(reset_throttle_counter == 0) { force_new_altitude(max(current_loc.alt, 100)); }else{ nav_throttle = get_throttle_rate(0); g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost; break; } } // else fall through case THROTTLE_AUTO: if(motors.auto_armed() == true) { // how far off are we altitude_error = get_altitude_error(); int16_t desired_speed; if(alt_change_flag == REACHED_ALT) { // we are at or above the target alt desired_speed = g.pi_alt_hold.get_p(altitude_error); // calculate desired speed from lon error update_throttle_cruise(g.pi_alt_hold.get_i(altitude_error, .02)); desired_speed = constrain(desired_speed, -250, 250); nav_throttle = get_throttle_rate(desired_speed); }else{ desired_speed = get_desired_climb_rate(); nav_throttle = get_throttle_rate(desired_speed); } } // hack to remove the influence of the ground effect if(g.sonar_enabled && current_loc.alt < 100 && landing_boost != 0) { nav_throttle = min(nav_throttle, 0); } #if FRAME_CONFIG == HELI_FRAME throttle_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle - landing_boost); #else throttle_out = g.throttle_cruise + nav_throttle + angle_boost - landing_boost; #endif g.rc_3.servo_out = throttle_out; break; } } // called after a GPS read static void update_navigation() { // wp_distance is in CM // -------------------- switch(control_mode) { case AUTO: // note: wp_control is handled by commands_logic verify_commands(); // calculates desired Yaw update_auto_yaw(); // calculates the desired Roll and Pitch update_nav_wp(); break; case GUIDED: wp_control = WP_MODE; // check if we are close to point > loiter wp_verify_byte = 0; verify_nav_wp(); if (wp_control == WP_MODE) { update_auto_yaw(); } else { set_mode(LOITER); } update_nav_wp(); break; case RTL: // have we reached the desired Altitude? if(alt_change_flag <= REACHED_ALT) { // we are at or above the target alt if(rtl_reached_alt == false) { rtl_reached_alt = true; do_RTL(); } wp_control = WP_MODE; // checks if we have made it to home update_nav_RTL(); } else{ // we need to loiter until we are ready to come home wp_control = LOITER_MODE; } // calculates desired Yaw #if FRAME_CONFIG == HELI_FRAME update_auto_yaw(); #endif // calculates the desired Roll and Pitch update_nav_wp(); break; // switch passthrough to LOITER case LOITER: case POSITION: // This feature allows us to reposition the quad when the user lets // go of the sticks if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500) { if(wp_distance > 500) loiter_override = true; } // Allow the user to take control temporarily, if(loiter_override) { // this sets the copter to not try and nav while we control it wp_control = NO_NAV_MODE; // reset LOITER to current position next_WP.lat = current_loc.lat; next_WP.lng = current_loc.lng; if(g.rc_2.control_in == 0 && g.rc_1.control_in == 0) { loiter_override = false; wp_control = LOITER_MODE; } }else{ wp_control = LOITER_MODE; } if(loiter_timer != 0) { // If we have a safe approach alt set and we have been loitering for 20 seconds(default), begin approach if((millis() - loiter_timer) > (uint32_t)g.auto_land_timeout.get()) { // just to make sure we clear the timer loiter_timer = 0; if(g.rtl_approach_alt == 0) { set_mode(LAND); if(home_distance < 300) { next_WP.lat = home.lat; next_WP.lng = home.lng; } }else{ if(g.rtl_approach_alt < current_loc.alt) { set_new_altitude(g.rtl_approach_alt); } } } } // calculates the desired Roll and Pitch update_nav_wp(); break; case LAND: if(g.sonar_enabled) verify_land_sonar(); else verify_land_baro(); // calculates the desired Roll and Pitch update_nav_wp(); break; case CIRCLE: wp_control = CIRCLE_MODE; // calculates desired Yaw update_auto_yaw(); update_nav_wp(); break; case STABILIZE: case TOY_A: case TOY_M: wp_control = NO_NAV_MODE; update_nav_wp(); break; } // are we in SIMPLE mode? if(do_simple && g.super_simple) { // get distance to home if(home_distance > SUPER_SIMPLE_RADIUS) { // 10m from home // we reset the angular offset to be a vector from home to the quad initial_simple_bearing = home_to_copter_bearing; //Serial.printf("ISB: %d\n", initial_simple_bearing); } } if(yaw_mode == YAW_LOOK_AT_HOME) { if(home_is_set) { //nav_yaw = point_at_home_yaw(); nav_yaw = get_bearing_cd(¤t_loc, &home); } else { nav_yaw = 0; } } } static void update_nav_RTL() { // Have we have reached Home? if(wp_distance <= 200 || check_missed_wp()) { // if loiter_timer value > 0, we are set to trigger auto_land or approach set_mode(LOITER); // just un case we arrive and we aren't at the lower RTL alt yet. set_new_altitude(get_RTL_alt()); // force loitering above home next_WP.lat = home.lat; next_WP.lng = home.lng; // If failsafe OR auto approach altitude is set // we will go into automatic land, (g.rtl_approach_alt) is the lowest point // -1 means disable feature if(failsafe || g.rtl_approach_alt >= 0) loiter_timer = millis(); else loiter_timer = 0; } slow_wp = true; } static void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- #if HIL_MODE != HIL_MODE_DISABLED // update hil before ahrs update gcs_update(); #endif ahrs.update(); omega = imu.get_gyro(); } static void update_trig(void){ Vector2f yawvector; Matrix3f temp = ahrs.get_dcm_matrix(); yawvector.x = temp.a.x; // sin yawvector.y = temp.b.x; // cos yawvector.normalize(); cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1 cos_roll_x = temp.c.z / cos_pitch_x; // level = 1 cos_pitch_x = constrain(cos_pitch_x, 0, 1.0); // this relies on constrain() of infinity doing the right thing, // which it does do in avr-libc cos_roll_x = constrain(cos_roll_x, -1.0, 1.0); sin_yaw_y = yawvector.x; // 1y = north cos_yaw_x = yawvector.y; // 0x = north //flat: // 0 ° = cos_yaw: 0.00, sin_yaw: 1.00, // 90° = cos_yaw: 1.00, sin_yaw: 0.00, // 180 = cos_yaw: 0.00, sin_yaw: -1.00, // 270 = cos_yaw: -1.00, sin_yaw: 0.00, } // updated at 10hz static void update_altitude() { static int16_t old_sonar_alt = 0; static int32_t old_baro_alt = 0; #if HIL_MODE == HIL_MODE_ATTITUDE // we are in the SIM, fake out the baro and Sonar int16_t fake_relative_alt = g_gps->altitude - gps_base_alt; baro_alt = fake_relative_alt; sonar_alt = fake_relative_alt; baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz old_baro_alt = baro_alt; #else // This is real life #if INERTIAL_NAV == ENABLED baro_rate = accels_velocity.z; #else // read in Actual Baro Altitude baro_alt = read_barometer(); // calc the vertical accel rate // 2.6 way int16_t temp = (baro_alt - old_baro_alt) * 10; baro_rate = (temp + baro_rate) >> 1; baro_rate = constrain(baro_rate, -300, 300); old_baro_alt = baro_alt; // Using Tridge's new clamb rate calc /* int16_t temp = barometer.get_climb_rate() * 100; baro_rate = (temp + baro_rate) >> 1; baro_rate = constrain(baro_rate, -300, 300); */ #endif // Note: sonar_alt is calculated in a faster loop and filtered with a mode filter #endif if(g.sonar_enabled) { // filter out offset float scale; // calc rate of change for Sonar #if HIL_MODE == HIL_MODE_ATTITUDE // we are in the SIM, fake outthe Sonar rate sonar_rate = baro_rate; #else // This is real life // calc the vertical accel rate // positive = going up. sonar_rate = (sonar_alt - old_sonar_alt) * 10; sonar_rate = constrain(sonar_rate, -150, 150); old_sonar_alt = sonar_alt; #endif if(baro_alt < 800) { #if SONAR_TILT_CORRECTION == 1 // correct alt for angle of the sonar float temp = cos_pitch_x * cos_roll_x; temp = max(temp, 0.707); sonar_alt = (float)sonar_alt * temp; #endif scale = (float)(sonar_alt - 400) / 200.0; scale = constrain(scale, 0.0, 1.0); // solve for a blended altitude current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale); // solve for a blended climb_rate climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale; }else{ // we must be higher than sonar (>800), don't get tricked by bad sonar reads current_loc.alt = baro_alt; // dont blend, go straight baro climb_rate_actual = baro_rate; } }else{ // NO Sonar case current_loc.alt = baro_alt; climb_rate_actual = baro_rate; } // update the target altitude verify_altitude(); // calc error climb_rate_error = (climb_rate_actual - climb_rate) / 5; #if INERTIAL_NAV == ENABLED // inertial_nav z_error_correction(); #endif } static void update_altitude_est() { if(alt_sensor_flag) { update_altitude(); alt_sensor_flag = false; if(g.log_bitmask & MASK_LOG_CTUN && motors.armed()) { Log_Write_Control_Tuning(); } }else{ // simple dithering of climb rate climb_rate += climb_rate_error; current_loc.alt += (climb_rate / 50); } //Serial.printf(" %d, %d, %d, %d\n", climb_rate_actual, climb_rate_error, climb_rate, current_loc.alt); } /* * #define THROTTLE_ADJUST 225 * static void * adjust_altitude() * { * if(g.rc_3.control_in <= (g.throttle_min + THROTTLE_ADJUST)){ * // we remove 0 to 100 PWM from hover * manual_boost = (g.rc_3.control_in - g.throttle_min) - THROTTLE_ADJUST; * manual_boost = max(-THROTTLE_ADJUST, manual_boost); * * }else if (g.rc_3.control_in >= (g.throttle_max - THROTTLE_ADJUST)){ * // we add 0 to 100 PWM to hover * manual_boost = g.rc_3.control_in - (g.throttle_max - THROTTLE_ADJUST); * manual_boost = min(THROTTLE_ADJUST, manual_boost); * * }else { * manual_boost = 0; * } * } */ static void tuning(){ tuning_value = (float)g.rc_6.control_in / 1000.0; g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1 switch(g.radio_tuning) { case CH6_RATE_KD: g.pid_rate_roll.kD(tuning_value); g.pid_rate_pitch.kD(tuning_value); break; case CH6_STABILIZE_KP: g.pi_stabilize_roll.kP(tuning_value); g.pi_stabilize_pitch.kP(tuning_value); break; case CH6_STABILIZE_KI: g.pi_stabilize_roll.kI(tuning_value); g.pi_stabilize_pitch.kI(tuning_value); break; case CH6_DAMP: case CH6_STABILIZE_KD: g.stabilize_d = tuning_value; break; case CH6_ACRO_KP: g.acro_p = tuning_value; break; case CH6_RATE_KP: g.pid_rate_roll.kP(tuning_value); g.pid_rate_pitch.kP(tuning_value); break; case CH6_RATE_KI: g.pid_rate_roll.kI(tuning_value); g.pid_rate_pitch.kI(tuning_value); break; case CH6_YAW_KP: g.pi_stabilize_yaw.kP(tuning_value); break; case CH6_YAW_KI: g.pi_stabilize_yaw.kI(tuning_value); break; case CH6_YAW_RATE_KP: g.pid_rate_yaw.kP(tuning_value); break; case CH6_YAW_RATE_KD: g.pid_rate_yaw.kD(tuning_value); break; case CH6_THROTTLE_KP: g.pid_throttle.kP(tuning_value); break; case CH6_TOP_BOTTOM_RATIO: motors.top_bottom_ratio = tuning_value; break; case CH6_RELAY: if (g.rc_6.control_in > 525) relay.on(); if (g.rc_6.control_in < 475) relay.off(); break; case CH6_TRAVERSE_SPEED: g.waypoint_speed_max = g.rc_6.control_in; break; case CH6_LOITER_KP: g.pi_loiter_lat.kP(tuning_value); g.pi_loiter_lon.kP(tuning_value); break; case CH6_LOITER_KI: g.pi_loiter_lat.kI(tuning_value); g.pi_loiter_lon.kI(tuning_value); break; case CH6_NAV_KP: g.pid_nav_lat.kP(tuning_value); g.pid_nav_lon.kP(tuning_value); break; case CH6_LOITER_RATE_KP: g.pid_loiter_rate_lon.kP(tuning_value); g.pid_loiter_rate_lat.kP(tuning_value); break; case CH6_LOITER_RATE_KI: g.pid_loiter_rate_lon.kI(tuning_value); g.pid_loiter_rate_lat.kI(tuning_value); break; case CH6_LOITER_RATE_KD: g.pid_loiter_rate_lon.kD(tuning_value); g.pid_loiter_rate_lat.kD(tuning_value); break; case CH6_NAV_I: g.pid_nav_lat.kI(tuning_value); g.pid_nav_lon.kI(tuning_value); break; #if FRAME_CONFIG == HELI_FRAME case CH6_HELI_EXTERNAL_GYRO: motors.ext_gyro_gain = tuning_value; break; #endif case CH6_THR_HOLD_KP: g.pi_alt_hold.kP(tuning_value); break; case CH6_OPTFLOW_KP: g.pid_optflow_roll.kP(tuning_value); g.pid_optflow_pitch.kP(tuning_value); break; case CH6_OPTFLOW_KI: g.pid_optflow_roll.kI(tuning_value); g.pid_optflow_pitch.kI(tuning_value); break; case CH6_OPTFLOW_KD: g.pid_optflow_roll.kD(tuning_value); g.pid_optflow_pitch.kD(tuning_value); break; #if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode case CH6_AHRS_YAW_KP: ahrs._kp_yaw.set(tuning_value); break; case CH6_AHRS_KP: ahrs._kp.set(tuning_value); break; #endif } } // Outputs Nav_Pitch and Nav_Roll static void update_nav_wp() { if(wp_control == LOITER_MODE) { // calc error to target calc_location_error(&next_WP); // use error as the desired rate towards the target calc_loiter(long_error, lat_error); }else if(wp_control == CIRCLE_MODE) { // check if we have missed the WP int16_t loiter_delta = (target_bearing - old_target_bearing)/100; // reset the old value old_target_bearing = target_bearing; // wrap values if (loiter_delta > 180) loiter_delta -= 360; if (loiter_delta < -180) loiter_delta += 360; // sum the angle around the WP loiter_sum += loiter_delta; // create a virtual waypoint that circles the next_WP // Count the degrees we have circulated the WP //int16_t circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100; circle_angle += (circle_rate * dTnav); //1° = 0.0174532925 radians // wrap if (circle_angle > 6.28318531) circle_angle -= 6.28318531; next_WP.lng = circle_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp); next_WP.lat = circle_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle)); // use error as the desired rate towards the target // nav_lon, nav_lat is calculated if(wp_distance > 400) { calc_nav_rate(get_desired_speed(g.waypoint_speed_max, true)); }else{ // calc the lat and long error to the target calc_location_error(&next_WP); calc_loiter(long_error, lat_error); } //CIRCLE: angle:29, dist:0, lat:400, lon:242 // debug //int16_t angleTest = degrees(circle_angle); //int16_t nroll = nav_roll; //int16_t npitch = nav_pitch; //Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll); }else if(wp_control == WP_MODE) { // calc error to target calc_location_error(&next_WP); int16_t speed = get_desired_speed(g.waypoint_speed_max, slow_wp); // use error as the desired rate towards the target calc_nav_rate(speed); }else if(wp_control == NO_NAV_MODE) { // clear out our nav so we can do things like land straight down // or change Loiter position // We bring copy over our Iterms for wind control, but we don't navigate nav_lon = g.pid_loiter_rate_lon.get_integrator(); nav_lat = g.pid_loiter_rate_lon.get_integrator(); nav_lon = constrain(nav_lon, -2000, 2000); // 20° nav_lat = constrain(nav_lat, -2000, 2000); // 20° } } static void update_auto_yaw() { if(wp_control == CIRCLE_MODE) { auto_yaw = get_bearing_cd(¤t_loc, &circle_WP); }else if(wp_control == LOITER_MODE) { // just hold nav_yaw }else if(yaw_tracking == MAV_ROI_LOCATION) { auto_yaw = get_bearing_cd(¤t_loc, &target_WP); }else if(yaw_tracking == MAV_ROI_WPNEXT) { // Point towards next WP auto_yaw = original_target_bearing; } } /* * MAV_ROI_NONE=0, No region of interest. | * MAV_ROI_WPNEXT=1, Point toward next MISSION. | * MAV_ROI_WPINDEX=2, Point toward given MISSION. | * MAV_ROI_LOCATION=3, Point toward fixed location. | * MAV_ROI_TARGET=4, Point toward of given id. * MAV_ROI_ENUM_END=5, */