/* SITL handling This simulates a GPS on a serial port Andrew Tridgell November 2011 */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL && !defined(HAL_BUILD_AP_PERIPH) #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include #include #include "Scheduler.h" #include "UARTDriver.h" #include #include #include #include #include #include #include #include #include #include #include #include #pragma GCC diagnostic ignored "-Wunused-result" using namespace HALSITL; extern const AP_HAL::HAL& hal; // state of GPS emulation static struct gps_state { /* pipe emulating UBLOX GPS serial stream */ int gps_fd, client_fd; uint32_t last_update; // milliseconds uint8_t next_index; uint8_t delay; } gps_state[2]; /* hook for reading from the GPS pipe */ ssize_t SITL_State::gps_read(int fd, void *buf, size_t count) { #ifdef FIONREAD // use FIONREAD to get exact value if possible int num_ready; while (ioctl(fd, FIONREAD, &num_ready) == 0 && num_ready > 3000) { // the pipe is filling up - drain it uint8_t tmp[128]; if (read(fd, tmp, sizeof(tmp)) != sizeof(tmp)) { break; } } #endif return read(fd, buf, count); } /* setup GPS input pipe */ int SITL_State::gps_pipe(uint8_t idx) { int fd[2]; if (_gps_fifo[idx] == nullptr) { UNUSED_RESULT(asprintf(&_gps_fifo[idx], "/tmp/gps_fifo%d", (int)(ARRAY_SIZE(_gps_fifo)*_instance + idx))); } if (gps_state[idx].client_fd != 0) { return gps_state[idx].client_fd; } pipe(fd); if (mkfifo(_gps_fifo[idx], 0666) < 0) { printf("MKFIFO failed with %s\n", strerror(errno)); } gps_state[idx].gps_fd = fd[1]; gps_state[idx].client_fd = fd[0]; gps_state[idx].last_update = AP_HAL::millis(); fcntl(fd[0], F_SETFD, FD_CLOEXEC); fcntl(fd[1], F_SETFD, FD_CLOEXEC); HALSITL::UARTDriver::_set_nonblocking(gps_state[idx].gps_fd); HALSITL::UARTDriver::_set_nonblocking(fd[0]); return gps_state[idx].client_fd; } /* write some bytes from the simulated GPS */ void SITL_State::_gps_write(const uint8_t *p, uint16_t size, uint8_t instance) { if (instance == 1 && _sitl->gps_disable[instance]) { return; } if (_gps_fifo[instance] == nullptr) { printf("GPS FIFO path not set\n"); return; } // also write to external fifo int fd = open(_gps_fifo[instance], O_WRONLY | O_NONBLOCK); if (fd >= 0) { write(fd, p, size); close(fd); } while (size--) { if (_sitl->gps_byteloss[instance] > 0.0f) { float r = ((((unsigned)random()) % 1000000)) / 1.0e4; if (r < _sitl->gps_byteloss[instance]) { // lose the byte p++; continue; } } if (gps_state[instance].gps_fd != 0) { write(gps_state[instance].gps_fd, p, 1); } p++; } } /* get timeval using simulation time */ static void simulation_timeval(struct timeval *tv) { uint64_t now = AP_HAL::micros64(); static uint64_t first_usec; static struct timeval first_tv; if (first_usec == 0) { first_usec = now; first_tv.tv_sec = AP::sitl()->start_time_UTC; } *tv = first_tv; tv->tv_sec += now / 1000000ULL; uint64_t new_usec = tv->tv_usec + (now % 1000000ULL); tv->tv_sec += new_usec / 1000000ULL; tv->tv_usec = new_usec % 1000000ULL; } /* send a UBLOX GPS message */ void SITL_State::_gps_send_ubx(uint8_t msgid, uint8_t *buf, uint16_t size, uint8_t instance) { const uint8_t PREAMBLE1 = 0xb5; const uint8_t PREAMBLE2 = 0x62; const uint8_t CLASS_NAV = 0x1; uint8_t hdr[6], chk[2]; hdr[0] = PREAMBLE1; hdr[1] = PREAMBLE2; hdr[2] = CLASS_NAV; hdr[3] = msgid; hdr[4] = size & 0xFF; hdr[5] = size >> 8; chk[0] = chk[1] = hdr[2]; chk[1] += (chk[0] += hdr[3]); chk[1] += (chk[0] += hdr[4]); chk[1] += (chk[0] += hdr[5]); for (uint16_t i=0; ilongitude * 1.0e7; pos.latitude = d->latitude * 1.0e7; pos.altitude_ellipsoid = d->altitude * 1000.0f; pos.altitude_msl = d->altitude * 1000.0f; pos.horizontal_accuracy = _sitl->gps_accuracy[instance]*1000; pos.vertical_accuracy = _sitl->gps_accuracy[instance]*1000; status.time = time_week_ms; status.fix_type = d->have_lock?3:0; status.fix_status = d->have_lock?1:0; status.differential_status = 0; status.res = 0; status.time_to_first_fix = 0; status.uptime = AP_HAL::millis(); velned.time = time_week_ms; velned.ned_north = 100.0f * d->speedN; velned.ned_east = 100.0f * d->speedE; velned.ned_down = 100.0f * d->speedD; velned.speed_2d = norm(d->speedN, d->speedE) * 100; velned.speed_3d = norm(d->speedN, d->speedE, d->speedD) * 100; velned.heading_2d = ToDeg(atan2f(d->speedE, d->speedN)) * 100000.0f; if (velned.heading_2d < 0.0f) { velned.heading_2d += 360.0f * 100000.0f; } velned.speed_accuracy = 40; velned.heading_accuracy = 4; memset(&sol, 0, sizeof(sol)); sol.fix_type = d->have_lock?3:0; sol.fix_status = 221; sol.satellites = d->have_lock?_sitl->gps_numsats[instance]:3; sol.time = time_week_ms; sol.week = time_week; dop.time = time_week_ms; dop.gDOP = 65535; dop.pDOP = 65535; dop.tDOP = 65535; dop.vDOP = 200; dop.hDOP = 121; dop.nDOP = 65535; dop.eDOP = 65535; pvt.itow = time_week_ms; pvt.year = 0; pvt.month = 0; pvt.day = 0; pvt.hour = 0; pvt.min = 0; pvt.sec = 0; pvt.valid = 0; // invalid utc date pvt.t_acc = 0; pvt.nano = 0; pvt.fix_type = d->have_lock? 0x3 : 0; pvt.flags = 0b10000011; // carrsoln=fixed, psm = na, diffsoln and fixok pvt.flags2 =0; pvt.num_sv = d->have_lock?_sitl->gps_numsats[instance]:3; pvt.lon = d->longitude * 1.0e7; pvt.lat = d->latitude * 1.0e7; pvt.height = d->altitude * 1000.0f; pvt.h_msl = d->altitude * 1000.0f; pvt.h_acc = _sitl->gps_accuracy[instance] * 1000; pvt.v_acc = _sitl->gps_accuracy[instance] * 1000; pvt.velN = 1000.0f * d->speedN; pvt.velE = 1000.0f * d->speedE; pvt.velD = 1000.0f * d->speedD; pvt.gspeed = norm(d->speedN, d->speedE) * 1000; pvt.head_mot = ToDeg(atan2f(d->speedE, d->speedN)) * 1.0e5; pvt.s_acc = 40; pvt.head_acc = 38 * 1.0e5; pvt.p_dop = 65535; memset(pvt.reserved1, '\0', ARRAY_SIZE(pvt.reserved1)); pvt.headVeh = 0; memset(pvt.reserved2, '\0', ARRAY_SIZE(pvt.reserved2)); if (_sitl->gps_hdg_enabled[instance] > SITL::SIM::GPS_HEADING_NONE) { const Vector3f ant1_pos = _sitl->gps_pos_offset[instance^1].get(); const Vector3f ant2_pos = _sitl->gps_pos_offset[instance].get(); Vector3f rel_antenna_pos = ant2_pos - ant1_pos; Matrix3f rot; // project attitude back using gyros to get antenna orientation at time of GPS sample Vector3f gyro(radians(_sitl->state.rollRate), radians(_sitl->state.pitchRate), radians(_sitl->state.yawRate)); rot.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(d->yaw)); const float lag = (1.0/_sitl->gps_hertz[instance]) * gps_state[instance].delay; rot.rotate(gyro * (-lag)); rel_antenna_pos = rot * rel_antenna_pos; relposned.version = 1; relposned.iTOW = time_week_ms; relposned.relPosN = rel_antenna_pos.x * 100; relposned.relPosE = rel_antenna_pos.y * 100; relposned.relPosD = rel_antenna_pos.z * 100; relposned.relPosLength = rel_antenna_pos.length() * 100; relposned.relPosHeading = degrees(Vector2f(rel_antenna_pos.x, rel_antenna_pos.y).angle()) * 1.0e5; relposned.flags = gnssFixOK | diffSoln | carrSolnFixed | isMoving | relPosValid | relPosHeadingValid; } _gps_send_ubx(MSG_POSLLH, (uint8_t*)&pos, sizeof(pos), instance); _gps_send_ubx(MSG_STATUS, (uint8_t*)&status, sizeof(status), instance); _gps_send_ubx(MSG_VELNED, (uint8_t*)&velned, sizeof(velned), instance); _gps_send_ubx(MSG_SOL, (uint8_t*)&sol, sizeof(sol), instance); _gps_send_ubx(MSG_DOP, (uint8_t*)&dop, sizeof(dop), instance); _gps_send_ubx(MSG_PVT, (uint8_t*)&pvt, sizeof(pvt), instance); if (_sitl->gps_hdg_enabled[instance] > SITL::SIM::GPS_HEADING_NONE) { _gps_send_ubx(MSG_RELPOSNED, (uint8_t*)&relposned, sizeof(relposned), instance); } if (time_week_ms > _next_nav_sv_info_time) { svinfo.itow = time_week_ms; svinfo.numCh = 32; svinfo.globalFlags = 4; // u-blox 8/M8 // fill in the SV's with some data even though firmware does not currently use it // note that this is not using num_sats as we aren't dynamically creating this to match for (uint8_t i = 0; i < SV_COUNT; i++) { svinfo.sv[i].chn = i; svinfo.sv[i].svid = i; svinfo.sv[i].flags = (i < _sitl->gps_numsats[instance]) ? 0x7 : 0x6; // sv used, diff correction data, orbit information svinfo.sv[i].quality = 7; // code and carrier lock and time synchronized svinfo.sv[i].cno = MAX(20, 30 - i); svinfo.sv[i].elev = MAX(30, 90 - i); svinfo.sv[i].azim = i; // not bothering to fill in prRes } _gps_send_ubx(MSG_SVINFO, (uint8_t*)&svinfo, sizeof(svinfo), instance); _next_nav_sv_info_time = time_week_ms + 10000; // 10 second delay } } /* formatted print of NMEA message, with checksum appended */ void SITL_State::_gps_nmea_printf(uint8_t instance, const char *fmt, ...) { va_list ap; va_start(ap, fmt); char *s = nmea_vaprintf(fmt, ap); va_end(ap); if (s != nullptr) { _gps_write((const uint8_t*)s, strlen(s), instance); free(s); } } /* send a new GPS NMEA packet */ void SITL_State::_update_gps_nmea(const struct gps_data *d, uint8_t instance) { struct timeval tv; struct tm *tm; char tstring[20]; char dstring[20]; char lat_string[20]; char lng_string[20]; simulation_timeval(&tv); tm = gmtime(&tv.tv_sec); // format time string snprintf(tstring, sizeof(tstring), "%02u%02u%06.3f", tm->tm_hour, tm->tm_min, tm->tm_sec + tv.tv_usec*1.0e-6); // format date string snprintf(dstring, sizeof(dstring), "%02u%02u%02u", tm->tm_mday, tm->tm_mon+1, tm->tm_year % 100); // format latitude double deg = fabs(d->latitude); snprintf(lat_string, sizeof(lat_string), "%02u%08.5f,%c", (unsigned)deg, (deg - int(deg))*60, d->latitude<0?'S':'N'); // format longitude deg = fabs(d->longitude); snprintf(lng_string, sizeof(lng_string), "%03u%08.5f,%c", (unsigned)deg, (deg - int(deg))*60, d->longitude<0?'W':'E'); _gps_nmea_printf(instance, "$GPGGA,%s,%s,%s,%01d,%02d,%04.1f,%07.2f,M,0.0,M,,", tstring, lat_string, lng_string, d->have_lock?1:0, d->have_lock?_sitl->gps_numsats[instance]:3, 2.0, d->altitude); float speed_knots = norm(d->speedN, d->speedE) * M_PER_SEC_TO_KNOTS; float heading = ToDeg(atan2f(d->speedE, d->speedN)); if (heading < 0) { heading += 360.0f; } //$GPVTG,133.18,T,120.79,M,0.11,N,0.20,K,A*24 _gps_nmea_printf(instance, "$GPVTG,%.2f,T,%.2f,M,%.2f,N,%.2f,K,A", tstring, heading, heading, speed_knots, speed_knots * KNOTS_TO_METERS_PER_SECOND * 3.6); _gps_nmea_printf(instance, "$GPRMC,%s,%c,%s,%s,%.2f,%.2f,%s,,", tstring, d->have_lock?'A':'V', lat_string, lng_string, speed_knots, heading, dstring); if (_sitl->gps_hdg_enabled[instance] == SITL::SIM::GPS_HEADING_HDT) { _gps_nmea_printf(instance, "$GPHDT,%.2f,T", d->yaw); } else if (_sitl->gps_hdg_enabled[instance] == SITL::SIM::GPS_HEADING_THS) { _gps_nmea_printf(instance, "$GPTHS,%.2f,%c,T", d->yaw, d->have_lock ? 'A' : 'V'); } } void SITL_State::_sbp_send_message(uint16_t msg_type, uint16_t sender_id, uint8_t len, uint8_t *payload, uint8_t instance) { if (len != 0 && payload == 0) { return; //SBP_NULL_ERROR; } uint8_t preamble = 0x55; _gps_write(&preamble, 1, instance); _gps_write((uint8_t*)&msg_type, 2, instance); _gps_write((uint8_t*)&sender_id, 2, instance); _gps_write(&len, 1, instance); if (len > 0) { _gps_write((uint8_t*)payload, len, instance); } uint16_t crc; crc = crc16_ccitt((uint8_t*)&(msg_type), 2, 0); crc = crc16_ccitt((uint8_t*)&(sender_id), 2, crc); crc = crc16_ccitt(&(len), 1, crc); crc = crc16_ccitt(payload, len, crc); _gps_write((uint8_t*)&crc, 2, instance); } void SITL_State::_update_gps_sbp(const struct gps_data *d, uint8_t instance) { struct sbp_heartbeat_t { bool sys_error : 1; bool io_error : 1; bool nap_error : 1; uint8_t res : 5; uint8_t protocol_minor : 8; uint8_t protocol_major : 8; uint8_t res2 : 7; bool ext_antenna : 1; } hb; // 4 bytes struct PACKED sbp_gps_time_t { uint16_t wn; //< GPS week number uint32_t tow; //< GPS Time of Week rounded to the nearest ms int32_t ns; //< Nanosecond remainder of rounded tow uint8_t flags; //< Status flags (reserved) } t; struct PACKED sbp_pos_llh_t { uint32_t tow; //< GPS Time of Week double lat; //< Latitude double lon; //< Longitude double height; //< Height uint16_t h_accuracy; //< Horizontal position accuracy estimate uint16_t v_accuracy; //< Vertical position accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags } pos; struct PACKED sbp_vel_ned_t { uint32_t tow; //< GPS Time of Week int32_t n; //< Velocity North coordinate int32_t e; //< Velocity East coordinate int32_t d; //< Velocity Down coordinate uint16_t h_accuracy; //< Horizontal velocity accuracy estimate uint16_t v_accuracy; //< Vertical velocity accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags (reserved) } velned; struct PACKED sbp_dops_t { uint32_t tow; //< GPS Time of Week uint16_t gdop; //< Geometric Dilution of Precision uint16_t pdop; //< Position Dilution of Precision uint16_t tdop; //< Time Dilution of Precision uint16_t hdop; //< Horizontal Dilution of Precision uint16_t vdop; //< Vertical Dilution of Precision uint8_t flags; //< Status flags (reserved) } dops; static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF; static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0100; static const uint16_t SBP_DOPS_MSGTYPE = 0x0206; static const uint16_t SBP_POS_LLH_MSGTYPE = 0x0201; static const uint16_t SBP_VEL_NED_MSGTYPE = 0x0205; uint16_t time_week; uint32_t time_week_ms; gps_time(&time_week, &time_week_ms); t.wn = time_week; t.tow = time_week_ms; t.ns = 0; t.flags = 0; _sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t, instance); if (!d->have_lock) { return; } pos.tow = time_week_ms; pos.lon = d->longitude; pos.lat= d->latitude; pos.height = d->altitude; pos.h_accuracy = _sitl->gps_accuracy[instance]*1000; pos.v_accuracy = _sitl->gps_accuracy[instance]*1000; pos.n_sats = _sitl->gps_numsats[instance]; // Send single point position solution pos.flags = 0; _sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); // Send "pseudo-absolute" RTK position solution pos.flags = 1; _sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); velned.tow = time_week_ms; velned.n = 1e3 * d->speedN; velned.e = 1e3 * d->speedE; velned.d = 1e3 * d->speedD; velned.h_accuracy = 5e3; velned.v_accuracy = 5e3; velned.n_sats = _sitl->gps_numsats[instance]; velned.flags = 0; _sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned, instance); static uint32_t do_every_count = 0; if (do_every_count % 5 == 0) { dops.tow = time_week_ms; dops.gdop = 1; dops.pdop = 1; dops.tdop = 1; dops.hdop = 100; dops.vdop = 1; dops.flags = 1; _sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops), (uint8_t*)&dops, instance); hb.protocol_major = 0; //Sends protocol version 0 _sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb), (uint8_t*)&hb, instance); } do_every_count++; } void SITL_State::_update_gps_sbp2(const struct gps_data *d, uint8_t instance) { struct sbp_heartbeat_t { bool sys_error : 1; bool io_error : 1; bool nap_error : 1; uint8_t res : 5; uint8_t protocol_minor : 8; uint8_t protocol_major : 8; uint8_t res2 : 7; bool ext_antenna : 1; } hb; // 4 bytes struct PACKED sbp_gps_time_t { uint16_t wn; //< GPS week number uint32_t tow; //< GPS Time of Week rounded to the nearest ms int32_t ns; //< Nanosecond remainder of rounded tow uint8_t flags; //< Status flags (reserved) } t; struct PACKED sbp_pos_llh_t { uint32_t tow; //< GPS Time of Week double lat; //< Latitude double lon; //< Longitude double height; //< Height uint16_t h_accuracy; //< Horizontal position accuracy estimate uint16_t v_accuracy; //< Vertical position accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags } pos; struct PACKED sbp_vel_ned_t { uint32_t tow; //< GPS Time of Week int32_t n; //< Velocity North coordinate int32_t e; //< Velocity East coordinate int32_t d; //< Velocity Down coordinate uint16_t h_accuracy; //< Horizontal velocity accuracy estimate uint16_t v_accuracy; //< Vertical velocity accuracy estimate uint8_t n_sats; //< Number of satellites used in solution uint8_t flags; //< Status flags (reserved) } velned; struct PACKED sbp_dops_t { uint32_t tow; //< GPS Time of Week uint16_t gdop; //< Geometric Dilution of Precision uint16_t pdop; //< Position Dilution of Precision uint16_t tdop; //< Time Dilution of Precision uint16_t hdop; //< Horizontal Dilution of Precision uint16_t vdop; //< Vertical Dilution of Precision uint8_t flags; //< Status flags (reserved) } dops; static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF; static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0102; static const uint16_t SBP_DOPS_MSGTYPE = 0x0208; static const uint16_t SBP_POS_LLH_MSGTYPE = 0x020A; static const uint16_t SBP_VEL_NED_MSGTYPE = 0x020E; uint16_t time_week; uint32_t time_week_ms; gps_time(&time_week, &time_week_ms); t.wn = time_week; t.tow = time_week_ms; t.ns = 0; t.flags = 1; _sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t, instance); if (!d->have_lock) { return; } pos.tow = time_week_ms; pos.lon = d->longitude; pos.lat= d->latitude; pos.height = d->altitude; pos.h_accuracy = _sitl->gps_accuracy[instance]*1000; pos.v_accuracy = _sitl->gps_accuracy[instance]*1000; pos.n_sats = _sitl->gps_numsats[instance]; // Send single point position solution pos.flags = 1; _sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); // Send "pseudo-absolute" RTK position solution pos.flags = 4; _sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance); velned.tow = time_week_ms; velned.n = 1e3 * d->speedN; velned.e = 1e3 * d->speedE; velned.d = 1e3 * d->speedD; velned.h_accuracy = 5e3; velned.v_accuracy = 5e3; velned.n_sats = _sitl->gps_numsats[instance]; velned.flags = 1; _sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned, instance); static uint32_t do_every_count = 0; if (do_every_count % 5 == 0) { dops.tow = time_week_ms; dops.gdop = 1; dops.pdop = 1; dops.tdop = 1; dops.hdop = 100; dops.vdop = 1; dops.flags = 1; _sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops), (uint8_t*)&dops, instance); hb.protocol_major = 2; //Sends protocol version 2.0 _sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb), (uint8_t*)&hb, instance); } do_every_count++; } void SITL_State::_update_gps_nova(const struct gps_data *d, uint8_t instance) { static struct PACKED nova_header { // 0 uint8_t preamble[3]; // 3 uint8_t headerlength; // 4 uint16_t messageid; // 6 uint8_t messagetype; //7 uint8_t portaddr; //8 uint16_t messagelength; //10 uint16_t sequence; //12 uint8_t idletime; //13 uint8_t timestatus; //14 uint16_t week; //16 uint32_t tow; //20 uint32_t recvstatus; // 24 uint16_t resv; //26 uint16_t recvswver; } header; struct PACKED psrdop { float gdop; float pdop; float hdop; float htdop; float tdop; float cutoff; uint32_t svcount; // extra data for individual prns } psrdop {}; struct PACKED bestpos { uint32_t solstat; uint32_t postype; double lat; double lng; double hgt; float undulation; uint32_t datumid; float latsdev; float lngsdev; float hgtsdev; // 4 bytes uint8_t stnid[4]; float diffage; float sol_age; uint8_t svstracked; uint8_t svsused; uint8_t svsl1; uint8_t svsmultfreq; uint8_t resv; uint8_t extsolstat; uint8_t galbeisigmask; uint8_t gpsglosigmask; } bestpos {}; struct PACKED bestvel { uint32_t solstat; uint32_t veltype; float latency; float age; double horspd; double trkgnd; // + up double vertspd; float resv; } bestvel {}; uint16_t time_week; uint32_t time_week_ms; gps_time(&time_week, &time_week_ms); header.preamble[0] = 0xaa; header.preamble[1] = 0x44; header.preamble[2] = 0x12; header.headerlength = sizeof(header); header.week = time_week; header.tow = time_week_ms; header.messageid = 174; header.messagelength = sizeof(psrdop); header.sequence += 1; psrdop.hdop = 1.20; psrdop.htdop = 1.20; _nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&psrdop, sizeof(psrdop), instance); header.messageid = 99; header.messagelength = sizeof(bestvel); header.sequence += 1; bestvel.horspd = norm(d->speedN, d->speedE); bestvel.trkgnd = ToDeg(atan2f(d->speedE, d->speedN)); bestvel.vertspd = -d->speedD; _nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestvel, sizeof(bestvel), instance); header.messageid = 42; header.messagelength = sizeof(bestpos); header.sequence += 1; bestpos.lat = d->latitude; bestpos.lng = d->longitude; bestpos.hgt = d->altitude; bestpos.svsused = _sitl->gps_numsats[instance]; bestpos.latsdev=0.2; bestpos.lngsdev=0.2; bestpos.hgtsdev=0.2; bestpos.solstat=0; bestpos.postype=32; _nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestpos, sizeof(bestpos), instance); } void SITL_State::_nova_send_message(uint8_t *header, uint8_t headerlength, uint8_t *payload, uint8_t payloadlen, uint8_t instance) { _gps_write(header, headerlength, instance); _gps_write(payload, payloadlen, instance); uint32_t crc = CalculateBlockCRC32(headerlength, header, (uint32_t)0); crc = CalculateBlockCRC32(payloadlen, payload, crc); _gps_write((uint8_t*)&crc, 4, instance); } #define CRC32_POLYNOMIAL 0xEDB88320L uint32_t SITL_State::CRC32Value(uint32_t icrc) { int i; uint32_t crc = icrc; for ( i = 8 ; i > 0; i-- ) { if ( crc & 1 ) crc = ( crc >> 1 ) ^ CRC32_POLYNOMIAL; else crc >>= 1; } return crc; } uint32_t SITL_State::CalculateBlockCRC32(uint32_t length, uint8_t *buffer, uint32_t crc) { while ( length-- != 0 ) { crc = ((crc >> 8) & 0x00FFFFFFL) ^ (CRC32Value(((uint32_t) crc ^ *buffer++) & 0xff)); } return( crc ); } /* temporary method to use file as GPS data */ void SITL_State::_update_gps_file(uint8_t instance) { static int fd = -1; static int fd2 = -1; int temp_fd; if (instance == 0) { if (fd == -1) { fd = open("/tmp/gps.dat", O_RDONLY|O_CLOEXEC); } temp_fd = fd; } else { if (fd2 == -1) { fd2 = open("/tmp/gps2.dat", O_RDONLY|O_CLOEXEC); } temp_fd = fd2; } if (temp_fd == -1) { return; } char buf[200]; ssize_t ret = ::read(temp_fd, buf, sizeof(buf)); if (ret > 0) { ::printf("wrote gps %u bytes\n", (unsigned)ret); _gps_write((const uint8_t *)buf, ret, instance); } if (ret == 0) { ::printf("gps rewind\n"); lseek(temp_fd, 0, SEEK_SET); } } /* possibly send a new GPS packet */ void SITL_State::_update_gps(double latitude, double longitude, float altitude, double speedN, double speedE, double speedD, double yaw, bool _have_lock) { char c; if (AP_HAL::millis() < 20000) { // apply the init offsets for the first 20s. This allows for // having the origin a long way from the takeoff location, // which makes testing long flights easier latitude += _sitl->gps_init_lat_ofs; longitude += _sitl->gps_init_lon_ofs; altitude += _sitl->gps_init_alt_ofs; } //Capture current position as basestation location for if (!_gps_has_basestation_position && _have_lock && AP_HAL::millis() >= _sitl->gps_lock_time[0]*1000UL) { _gps_basestation_data.latitude = latitude; _gps_basestation_data.longitude = longitude; _gps_basestation_data.altitude = altitude; _gps_basestation_data.speedN = speedN; _gps_basestation_data.speedE = speedE; _gps_basestation_data.speedD = speedD; _gps_basestation_data.have_lock = _have_lock; _gps_has_basestation_position = true; } for (uint8_t idx=0; idx<2; idx++) { struct gps_data d; // simulate delayed lock times bool have_lock = (_have_lock && !_sitl->gps_disable[idx] && AP_HAL::millis() >= _sitl->gps_lock_time[idx]*1000UL); // run at configured GPS rate (default 5Hz) if ((AP_HAL::millis() - gps_state[idx].last_update) < (uint32_t)(1000/_sitl->gps_hertz[idx])) { continue; } // swallow any config bytes if (gps_state[idx].gps_fd != 0) { read(gps_state[idx].gps_fd, &c, 1); } gps_state[idx].last_update = AP_HAL::millis(); d.latitude = latitude; d.longitude = longitude; d.yaw = yaw; // add an altitude error controlled by a slow sine wave d.altitude = altitude + _sitl->gps_noise[idx] * sinf(AP_HAL::millis() * 0.0005f) + _sitl->gps_alt_offset[idx]; // Add offet to c.g. velocity to get velocity at antenna and add simulated error Vector3f velErrorNED = _sitl->gps_vel_err[idx]; d.speedN = speedN + (velErrorNED.x * rand_float()); d.speedE = speedE + (velErrorNED.y * rand_float()); d.speedD = speedD + (velErrorNED.z * rand_float()); d.have_lock = have_lock; if (_sitl->gps_drift_alt[idx] > 0) { // slow altitude drift d.altitude += _sitl->gps_drift_alt[idx]*sinf(AP_HAL::millis()*0.001f*0.02f); } // correct the latitude, longitude, hiehgt and NED velocity for the offset between // the vehicle c.g. and GPs antenna Vector3f posRelOffsetBF = _sitl->gps_pos_offset[idx]; if (!posRelOffsetBF.is_zero()) { // get a rotation matrix following DCM conventions (body to earth) Matrix3f rotmat; _sitl->state.quaternion.rotation_matrix(rotmat); // rotate the antenna offset into the earth frame Vector3f posRelOffsetEF = rotmat * posRelOffsetBF; // Add the offset to the latitude, longitude and height using a spherical earth approximation double const earth_rad_inv = 1.569612305760477e-7; // use Authalic/Volumetric radius double lng_scale_factor = earth_rad_inv / cos(radians(d.latitude)); d.latitude += degrees(posRelOffsetEF.x * earth_rad_inv); d.longitude += degrees(posRelOffsetEF.y * lng_scale_factor); d.altitude -= posRelOffsetEF.z; // calculate a velocity offset due to the antenna position offset and body rotation rate // note: % operator is overloaded for cross product Vector3f gyro(radians(_sitl->state.rollRate), radians(_sitl->state.pitchRate), radians(_sitl->state.yawRate)); Vector3f velRelOffsetBF = gyro % posRelOffsetBF; // rotate the velocity offset into earth frame and add to the c.g. velocity Vector3f velRelOffsetEF = rotmat * velRelOffsetBF; d.speedN += velRelOffsetEF.x; d.speedE += velRelOffsetEF.y; d.speedD += velRelOffsetEF.z; } // add in some GPS lag uint8_t &next_index = gps_state[idx].next_index; uint8_t &delay = gps_state[idx].delay; _gps_data[idx][next_index++] = d; if (next_index >= delay+1) { next_index = 0; } d = _gps_data[idx][next_index]; if (_sitl->gps_delay[idx] != delay) { // cope with updates to the delay control delay = _sitl->gps_delay[idx]; for (uint8_t i=0; igps_glitch[idx]; d.latitude += glitch_offsets.x; d.longitude += glitch_offsets.y; d.altitude += glitch_offsets.z; if (gps_state[idx].gps_fd != 0) { _update_gps_instance((SITL::SIM::GPSType)_sitl->gps_type[idx].get(), &d, idx); } } } void SITL_State::_update_gps_instance(SITL::SIM::GPSType gps_type, const struct gps_data *data, uint8_t instance) { switch (gps_type) { case SITL::SIM::GPS_TYPE_NONE: // no GPS attached break; case SITL::SIM::GPS_TYPE_UBLOX: _update_gps_ubx(data, instance); break; case SITL::SIM::GPS_TYPE_NMEA: _update_gps_nmea(data, instance); break; case SITL::SIM::GPS_TYPE_SBP: _update_gps_sbp(data, instance); break; case SITL::SIM::GPS_TYPE_SBP2: _update_gps_sbp2(data, instance); break; case SITL::SIM::GPS_TYPE_NOVA: _update_gps_nova(data, instance); break; case SITL::SIM::GPS_TYPE_FILE: _update_gps_file(instance); break; } } #endif