/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Beacon.h" #include "AP_Beacon_Backend.h" #include "AP_Beacon_Pozyx.h" #include "AP_Beacon_Marvelmind.h" #include "AP_Beacon_SITL.h" #include extern const AP_HAL::HAL &hal; // table of user settable parameters const AP_Param::GroupInfo AP_Beacon::var_info[] = { // @Param: _TYPE // @DisplayName: Beacon based position estimation device type // @Description: What type of beacon based position estimation device is connected // @Values: 0:None,1:Pozyx,2:Marvelmind // @User: Advanced AP_GROUPINFO("_TYPE", 0, AP_Beacon, _type, 0), // @Param: _LATITUDE // @DisplayName: Beacon origin's latitude // @Description: Beacon origin's latitude // @Units: deg // @Increment: 0.000001 // @Range: -90 90 // @User: Advanced AP_GROUPINFO("_LATITUDE", 1, AP_Beacon, origin_lat, 0), // @Param: _LONGITUDE // @DisplayName: Beacon origin's longitude // @Description: Beacon origin's longitude // @Units: deg // @Increment: 0.000001 // @Range: -180 180 // @User: Advanced AP_GROUPINFO("_LONGITUDE", 2, AP_Beacon, origin_lon, 0), // @Param: _ALT // @DisplayName: Beacon origin's altitude above sealevel in meters // @Description: Beacon origin's altitude above sealevel in meters // @Units: m // @Increment: 1 // @Range: 0 10000 // @User: Advanced AP_GROUPINFO("_ALT", 3, AP_Beacon, origin_alt, 0), // @Param: _ORIENT_YAW // @DisplayName: Beacon systems rotation from north in degrees // @Description: Beacon systems rotation from north in degrees // @Units: deg // @Increment: 1 // @Range: -180 +180 // @User: Advanced AP_GROUPINFO("_ORIENT_YAW", 4, AP_Beacon, orient_yaw, 0), AP_GROUPEND }; AP_Beacon::AP_Beacon(AP_SerialManager &_serial_manager) : serial_manager(_serial_manager) { AP_Param::setup_object_defaults(this, var_info); } // initialise the AP_Beacon class void AP_Beacon::init(void) { if (_driver != nullptr) { // init called a 2nd time? return; } // create backend if (_type == AP_BeaconType_Pozyx) { _driver = new AP_Beacon_Pozyx(*this, serial_manager); } else if (_type == AP_BeaconType_Marvelmind) { _driver = new AP_Beacon_Marvelmind(*this, serial_manager); } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (_type == AP_BeaconType_SITL) { _driver = new AP_Beacon_SITL(*this); } #endif } // return true if beacon feature is enabled bool AP_Beacon::enabled(void) { return (_type != AP_BeaconType_None); } // return true if sensor is basically healthy (we are receiving data) bool AP_Beacon::healthy(void) { if (!device_ready()) { return false; } return _driver->healthy(); } // update state. This should be called often from the main loop void AP_Beacon::update(void) { if (!device_ready()) { return; } _driver->update(); // update boundary for fence update_boundary_points(); } // return origin of position estimate system bool AP_Beacon::get_origin(Location &origin_loc) const { if (!device_ready()) { return false; } // check for un-initialised origin if (is_zero(origin_lat) && is_zero(origin_lon) && is_zero(origin_alt)) { return false; } // return origin origin_loc = {}; origin_loc.lat = origin_lat * 1.0e7f; origin_loc.lng = origin_lon * 1.0e7f; origin_loc.alt = origin_alt * 100; return true; } // return position in NED from position estimate system's origin in meters bool AP_Beacon::get_vehicle_position_ned(Vector3f &position, float& accuracy_estimate) const { if (!device_ready()) { return false; } // check for timeout if (AP_HAL::millis() - veh_pos_update_ms > AP_BEACON_TIMEOUT_MS) { return false; } // return position position = veh_pos_ned; accuracy_estimate = veh_pos_accuracy; return true; } // return the number of beacons uint8_t AP_Beacon::count() const { if (!device_ready()) { return 0; } return num_beacons; } // return all beacon data bool AP_Beacon::get_beacon_data(uint8_t beacon_instance, struct BeaconState& state) const { if (!device_ready() || beacon_instance >= num_beacons) { return false; } state = beacon_state[beacon_instance]; return true; } // return individual beacon's id uint8_t AP_Beacon::beacon_id(uint8_t beacon_instance) const { if (beacon_instance >= num_beacons) { return 0; } return beacon_state[beacon_instance].id; } // return beacon health bool AP_Beacon::beacon_healthy(uint8_t beacon_instance) const { if (beacon_instance >= num_beacons) { return false; } return beacon_state[beacon_instance].healthy; } // return distance to beacon in meters float AP_Beacon::beacon_distance(uint8_t beacon_instance) const { if (!beacon_state[beacon_instance].healthy || beacon_instance >= num_beacons) { return 0.0f; } return beacon_state[beacon_instance].distance; } // return beacon position in meters Vector3f AP_Beacon::beacon_position(uint8_t beacon_instance) const { if (!device_ready() || beacon_instance >= num_beacons) { Vector3f temp = {}; return temp; } return beacon_state[beacon_instance].position; } // return last update time from beacon in milliseconds uint32_t AP_Beacon::beacon_last_update_ms(uint8_t beacon_instance) const { if (_type == AP_BeaconType_None || beacon_instance >= num_beacons) { return 0; } return beacon_state[beacon_instance].distance_update_ms; } // create fence boundary points void AP_Beacon::update_boundary_points() { // we need three beacons at least to create boundary fence. // update boundary fence if number of beacons changes if (!device_ready() || num_beacons < AP_BEACON_MINIMUM_FENCE_BEACONS || boundary_num_beacons == num_beacons) { return; } // record number of beacons so we do not repeat calculations boundary_num_beacons = num_beacons; // accumulate beacon points Vector2f beacon_points[AP_BEACON_MAX_BEACONS]; for (uint8_t index = 0; index < num_beacons; index++) { const Vector3f& point_3d = beacon_position(index); beacon_points[index].x = point_3d.x; beacon_points[index].y = point_3d.y; } // create polygon around boundary points using the following algorithm // set the "current point" as the first boundary point // loop through all the boundary points looking for the point which creates a vector (from the current point to this new point) with the lowest angle // check if point is already in boundary // - no: add to boundary, move current point to this new point and repeat the above // - yes: we've completed the bounding box, delete any boundary points found earlier than the duplicate Vector2f boundary_points[AP_BEACON_MAX_BEACONS+1]; // array of boundary points uint8_t curr_boundary_idx = 0; // index into boundary_sorted index. always points to the highest filled in element of the array uint8_t curr_beacon_idx = 0; // index into beacon_point array. point indexed is same point as curr_boundary_idx's // initialise first point of boundary_sorted with first beacon's position (this point may be removed later if it is found to not be on the outer boundary) boundary_points[curr_boundary_idx] = beacon_points[curr_beacon_idx]; bool boundary_success = false; // true once the boundary has been successfully found bool boundary_failure = false; // true if we fail to build the boundary float start_angle = 0.0f; // starting angle used when searching for next boundary point, on each iteration this climbs but never climbs past PI * 2 while (!boundary_success && !boundary_failure) { // look for next outer point uint8_t next_idx; float next_angle; if (get_next_boundary_point(beacon_points, num_beacons, curr_beacon_idx, start_angle, next_idx, next_angle)) { // add boundary point to boundary_sorted array curr_boundary_idx++; boundary_points[curr_boundary_idx] = beacon_points[next_idx]; curr_beacon_idx = next_idx; start_angle = next_angle; // check if we have a complete boundary by looking for duplicate points within the boundary_sorted uint8_t dup_idx = 0; bool dup_found = false; while (dup_idx < curr_boundary_idx && !dup_found) { dup_found = (boundary_points[dup_idx] == boundary_points[curr_boundary_idx]); if (!dup_found) { dup_idx++; } } // if duplicate is found, remove all boundary points before the duplicate because they are inner points if (dup_found) { uint8_t num_pts = curr_boundary_idx - dup_idx + 1; if (num_pts > AP_BEACON_MINIMUM_FENCE_BEACONS) { // success, copy boundary points to boundary array and convert meters to cm for (uint8_t j = 0; j < num_pts; j++) { boundary[j] = boundary_points[j+dup_idx] * 100.0f; } boundary_num_points = num_pts; boundary_success = true; } else { // boundary has too few points boundary_failure = true; } } } else { // failed to create boundary - give up! boundary_failure = true; } } // clear boundary on failure if (boundary_failure) { boundary_num_points = 0; } } // find next boundary point from an array of boundary points given the current index into that array // returns true if a next point can be found // current_index should be an index into the boundary_pts array // start_angle is an angle (in radians), the search will sweep clockwise from this angle // the index of the next point is returned in the next_index argument // the angle to the next point is returned in the next_angle argument bool AP_Beacon::get_next_boundary_point(const Vector2f* boundary_pts, uint8_t num_points, uint8_t current_index, float start_angle, uint8_t& next_index, float& next_angle) { // sanity check if (boundary_pts == nullptr || current_index >= num_points) { return false; } // get current point Vector2f curr_point = boundary_pts[current_index]; // search through all points for next boundary point in a clockwise direction float lowest_angle = M_PI_2; float lowest_angle_relative = M_PI_2; bool lowest_found = false; uint8_t lowest_index = 0; for (uint8_t i=0; i < num_points; i++) { if (i != current_index) { Vector2f vec = boundary_pts[i] - curr_point; if (!vec.is_zero()) { float angle = wrap_2PI(atan2f(vec.y, vec.x)); float angle_relative = wrap_2PI(angle - start_angle); if ((angle_relative < lowest_angle_relative) || !lowest_found) { lowest_angle = angle; lowest_angle_relative = angle_relative; lowest_index = i; lowest_found = true; } } } } // return results if (lowest_found) { next_index = lowest_index; next_angle = lowest_angle; } return lowest_found; } // return fence boundary array const Vector2f* AP_Beacon::get_boundary_points(uint16_t& num_points) const { if (!device_ready()) { num_points = 0; return nullptr; } num_points = boundary_num_points; return boundary; } // check if the device is ready bool AP_Beacon::device_ready(void) const { return ((_driver != nullptr) && (_type != AP_BeaconType_None)); }