/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == HEXA_FRAME static void init_motors_out() { #if INSTANT_PWM == 0 APM_RC.SetFastOutputChannels( _BV(CH_1) | _BV(CH_2) | _BV(CH_3) | _BV(CH_4) | _BV(CH_7) | _BV(CH_8) ); #endif } static void output_motors_armed() { int roll_out, pitch_out; int out_min = g.rc_3.radio_min; int out_max = g.rc_3.radio_max; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); if(g.frame_orientation == X_FRAME){ roll_out = g.rc_1.pwm_out / 2; pitch_out = (float)g.rc_2.pwm_out * .866; //left side motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // CCW Middle motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW Front motor_out[CH_8] = g.rc_3.radio_out + roll_out - pitch_out; // CW Back //right side motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW Middle motor_out[CH_7] = g.rc_3.radio_out - roll_out + pitch_out; // CCW Front motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW Back }else{ roll_out = (float)g.rc_1.pwm_out * .866; pitch_out = g.rc_2.pwm_out / 2; //Front side motor_out[CH_1] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT motor_out[CH_7] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT motor_out[CH_4] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT //Back side motor_out[CH_2] = g.rc_3.radio_out - g.rc_2.pwm_out; // CCW BACK motor_out[CH_3] = g.rc_3.radio_out + roll_out - pitch_out; // CW, BACK LEFT motor_out[CH_8] = g.rc_3.radio_out - roll_out - pitch_out; // CW BACK RIGHT } // Yaw motor_out[CH_2] += g.rc_4.pwm_out; // CCW motor_out[CH_7] += g.rc_4.pwm_out; // CCW motor_out[CH_4] += g.rc_4.pwm_out; // CCW motor_out[CH_3] -= g.rc_4.pwm_out; // CW motor_out[CH_1] -= g.rc_4.pwm_out; // CW motor_out[CH_8] -= g.rc_4.pwm_out; // CW // Tridge's stability patch for (int m = 0; m <= 6; m++) { int c = ch_of_mot(m); int c_opp = ch_of_mot(m^1); // m^1 is the opposite motor. c_opp is channel of opposite motor. if (motor_out[c] > out_max) { motor_out[c_opp] -= motor_out[c] - out_max; motor_out[c] = out_max; } } // limit output so motors don't stop motor_out[CH_1] = max(motor_out[CH_1], out_min); motor_out[CH_2] = max(motor_out[CH_2], out_min); motor_out[CH_3] = max(motor_out[CH_3], out_min); motor_out[CH_4] = max(motor_out[CH_4], out_min); motor_out[CH_7] = max(motor_out[CH_7], out_min); motor_out[CH_8] = max(motor_out[CH_8], out_min); #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(g.rc_3.servo_out == 0){ motor_out[CH_1] = g.rc_3.radio_min; motor_out[CH_2] = g.rc_3.radio_min; motor_out[CH_3] = g.rc_3.radio_min; motor_out[CH_4] = g.rc_3.radio_min; motor_out[CH_7] = g.rc_3.radio_min; motor_out[CH_8] = g.rc_3.radio_min; } #endif // this filter slows the acceleration of motors vs the deceleration // Idea by Denny Rowland to help with his Yaw issue for(int8_t m = 0; m <= 6; m++ ) { int c = ch_of_mot(m); if(motor_filtered[c] < motor_out[c]){ motor_filtered[c] = (motor_out[c] + motor_filtered[c]) / 2; }else{ // don't filter motor_filtered[c] = motor_out[c]; } } APM_RC.OutputCh(CH_1, motor_filtered[CH_1]); APM_RC.OutputCh(CH_2, motor_filtered[CH_2]); APM_RC.OutputCh(CH_3, motor_filtered[CH_3]); APM_RC.OutputCh(CH_4, motor_filtered[CH_4]); APM_RC.OutputCh(CH_7, motor_filtered[CH_7]); APM_RC.OutputCh(CH_8, motor_filtered[CH_8]); #if INSTANT_PWM == 1 // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); APM_RC.Force_Out6_Out7(); #endif } static void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_armed = true; } // fill the motor_out[] array for HIL use for (unsigned char i = 0; i < 8; i++) { motor_out[i] = g.rc_3.radio_min; } // Send commands to motors APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min); } static void output_motor_test() { motor_out[CH_1] = g.rc_3.radio_min; motor_out[CH_2] = g.rc_3.radio_min; motor_out[CH_3] = g.rc_3.radio_min; motor_out[CH_4] = g.rc_3.radio_min; motor_out[CH_7] = g.rc_3.radio_min; motor_out[CH_8] = g.rc_3.radio_min; if(g.frame_orientation == X_FRAME){ // 31 // 24 if(g.rc_1.control_in > 3000){ // right motor_out[CH_1] += 100; } if(g.rc_1.control_in < -3000){ // left motor_out[CH_2] += 100; } if(g.rc_2.control_in > 3000){ // back motor_out[CH_8] += 100; motor_out[CH_4] += 100; } if(g.rc_2.control_in < -3000){ // front motor_out[CH_7] += 100; motor_out[CH_3] += 100; } }else{ // 3 // 2 1 // 4 if(g.rc_1.control_in > 3000){ // right motor_out[CH_4] += 100; motor_out[CH_8] += 100; } if(g.rc_1.control_in < -3000){ // left motor_out[CH_7] += 100; motor_out[CH_3] += 100; } if(g.rc_2.control_in > 3000){ // back motor_out[CH_2] += 100; } if(g.rc_2.control_in < -3000){ // front motor_out[CH_1] += 100; } } APM_RC.OutputCh(CH_1, motor_out[CH_1]); APM_RC.OutputCh(CH_2, motor_out[CH_2]); APM_RC.OutputCh(CH_3, motor_out[CH_3]); APM_RC.OutputCh(CH_4, motor_out[CH_4]); APM_RC.OutputCh(CH_7, motor_out[CH_7]); APM_RC.OutputCh(CH_8, motor_out[CH_8]); } /* APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_7, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_1, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min + 100); delay(1000); APM_RC.OutputCh(CH_8, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min + 100); delay(1000); } */ #endif