/// @file AP_MotorsHeli.h /// @brief Motor control class for Traditional Heli #pragma once #include #include #include // ArduPilot Mega Vector/Matrix math Library #include #include #include "AP_Motors_Class.h" #include "AP_MotorsHeli_RSC.h" // servo output rates #define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters // default swash min and max angles and positions #define AP_MOTORS_HELI_SWASH_CYCLIC_MAX 2500 #define AP_MOTORS_HELI_COLLECTIVE_MIN 1250 #define AP_MOTORS_HELI_COLLECTIVE_MAX 1750 #define AP_MOTORS_HELI_COLLECTIVE_MID 1500 // default main rotor speed (ch8 out) as a number from 0 ~ 1000 #define AP_MOTORS_HELI_RSC_SETPOINT 700 // default main rotor critical speed #define AP_MOTORS_HELI_RSC_CRITICAL 500 // RSC output defaults #define AP_MOTORS_HELI_RSC_IDLE_DEFAULT 0 // default main rotor ramp up time in seconds #define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to setpoint #define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed // flybar types #define AP_MOTORS_HELI_NOFLYBAR 0 class AP_HeliControls; /// @class AP_MotorsHeli class AP_MotorsHeli : public AP_Motors { public: /// Constructor AP_MotorsHeli( uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_Motors(loop_rate, speed_hz) { AP_Param::setup_object_defaults(this, var_info); }; // init void init(motor_frame_class frame_class, motor_frame_type frame_type) override; // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) override; // set update rate to motors - a value in hertz virtual void set_update_rate( uint16_t speed_hz ) override = 0; // output_min - sets servos to neutral point with motors stopped void output_min() override; // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 virtual void output_test_seq(uint8_t motor_seq, int16_t pwm) override = 0; // // heli specific methods // // parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check virtual bool parameter_check(bool display_msg) const; // has_flybar - returns true if we have a mechical flybar virtual bool has_flybar() const { return AP_MOTORS_HELI_NOFLYBAR; } // set_collective_for_landing - limits collective from going too low if we know we are landed void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; } // set_inverted_flight - enables/disables inverted flight void set_inverted_flight(bool inverted) { _heliflags.inverted_flight = inverted; } // get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT) uint8_t get_rsc_mode() const { return _rsc_mode; } // get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1) float get_rsc_setpoint() const { return _rsc_setpoint * 0.001f; } // set_rpm - for rotor speed governor virtual void set_rpm(float rotor_rpm) = 0; // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1 virtual void set_desired_rotor_speed(float desired_speed) = 0; // get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1 virtual float get_desired_rotor_speed() const = 0; // get_main_rotor_speed - estimated rotor speed when no governor or speed sensor used virtual float get_main_rotor_speed() const = 0; // return true if the main rotor is up to speed bool rotor_runup_complete() const { return _heliflags.rotor_runup_complete; } // rotor_speed_above_critical - return true if rotor speed is above that critical for flight virtual bool rotor_speed_above_critical() const = 0; //get rotor governor output virtual float get_governor_output() const = 0; //get engine throttle output virtual float get_control_output() const = 0; // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict virtual uint16_t get_motor_mask() override = 0; virtual void set_acro_tail(bool set) {} // ext_gyro_gain - set external gyro gain in range 0 ~ 1 virtual void ext_gyro_gain(float gain) {} // output - sends commands to the motors void output() override; // supports_yaw_passthrough virtual bool supports_yaw_passthrough() const { return false; } float get_throttle_hover() const override { return 0.5f; } // support passing init_targets_on_arming flag to greater code bool init_targets_on_arming() const { return _heliflags.init_targets_on_arming; } void enable_rsc_parameters(void); // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; protected: // manual servo modes (used for setup) enum ServoControlModes { SERVO_CONTROL_MODE_AUTOMATED = 0, SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH, SERVO_CONTROL_MODE_MANUAL_MAX, SERVO_CONTROL_MODE_MANUAL_CENTER, SERVO_CONTROL_MODE_MANUAL_MIN, SERVO_CONTROL_MODE_MANUAL_OSCILLATE, }; RSCThrCrvParam _rsc_thrcrv; RSCGovParam _rsc_gov; // output - sends commands to the motors void output_armed_stabilizing() override; void output_armed_zero_throttle(); void output_disarmed(); // update_motor_controls - sends commands to motor controllers virtual void update_motor_control(RotorControlState state) = 0; // run spool logic void output_logic(); // output_to_motors - sends commands to the motors virtual void output_to_motors() = 0; // reset_flight_controls - resets all controls and scalars to flight status void reset_flight_controls(); // update the throttle input filter void update_throttle_filter() override; // move_actuators - moves swash plate and tail rotor virtual void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) = 0; // reset_swash_servo - free up swash servo for maximum movement void reset_swash_servo(SRV_Channel::Aux_servo_function_t function); // init_outputs - initialise Servo/PWM ranges and endpoints virtual bool init_outputs() = 0; // calculate_armed_scalars - must be implemented by child classes virtual void calculate_armed_scalars() = 0; // calculate_scalars - must be implemented by child classes virtual void calculate_scalars() = 0; // servo_test - move servos through full range of movement // to be overloaded by child classes, different vehicle types would have different movement patterns virtual void servo_test() = 0; // write to a swash servo. output value is pwm void rc_write_swash(uint8_t chan, float swash_in); // flags bitmask struct heliflags_type { uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum uint8_t rotor_runup_complete : 1; // true if the rotors have had enough time to wind up uint8_t inverted_flight : 1; // true for inverted flight uint8_t init_targets_on_arming : 1; // 0 if targets were initialized, 1 if targets were not initialized after arming } _heliflags; // parameters AP_Int16 _cyclic_max; // Maximum cyclic angle of the swash plate in centi-degrees AP_Int16 _collective_min; // Lowest possible servo position for the swashplate AP_Int16 _collective_max; // Highest possible servo position for the swashplate AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Asymmetrical blades) AP_Int8 _servo_mode; // Pass radio inputs directly to servos during set-up through mission planner AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabled AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach setpoint AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time AP_Int16 _rsc_critical; // Rotor speed below which flight is not possible AP_Int16 _rsc_idle_output; // Rotor control output while at idle AP_Int16 _rsc_slewrate; // throttle slew rate (percentage per second) AP_Int8 _servo_test; // sets number of cycles to test servo movement on bootup // internal variables float _collective_mid_pct = 0.0f; // collective mid parameter value converted to 0 ~ 1 range uint8_t _servo_test_cycle_counter = 0; // number of test cycles left to run after bootup motor_frame_type _frame_type; };