/* * The MIT License (MIT) * * Copyright (c) 2014 Pavel Kirienko * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Siddharth Bharat Purohit */ #include "AP_HAL_ChibiOS.h" #if HAL_WITH_UAVCAN #include #include #include "CANIface.h" #include "CANClock.h" #include "CANInternal.h" #include "CANSerialRouter.h" #include # include #if CH_KERNEL_MAJOR == 2 # if !(defined(STM32F10X_CL) || defined(STM32F2XX) || defined(STM32F3XX) || defined(STM32F4XX)) // IRQ numbers # define CAN1_RX0_IRQn USB_LP_CAN1_RX0_IRQn # define CAN1_TX_IRQn USB_HP_CAN1_TX_IRQn // IRQ vectors # if !defined(CAN1_RX0_IRQHandler) || !defined(CAN1_TX_IRQHandler) # define CAN1_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler # define CAN1_RX0_IRQHandler USB_LP_CAN1_RX0_IRQHandler # endif # endif #endif #if (CH_KERNEL_MAJOR == 3 || CH_KERNEL_MAJOR == 4 || CH_KERNEL_MAJOR == 5) #define CAN1_TX_IRQHandler STM32_CAN1_TX_HANDLER #define CAN1_RX0_IRQHandler STM32_CAN1_RX0_HANDLER #define CAN1_RX1_IRQHandler STM32_CAN1_RX1_HANDLER #define CAN2_TX_IRQHandler STM32_CAN2_TX_HANDLER #define CAN2_RX0_IRQHandler STM32_CAN2_RX0_HANDLER #define CAN2_RX1_IRQHandler STM32_CAN2_RX1_HANDLER #endif /* STM32F3's only CAN inteface does not have a number. */ #if defined(STM32F3XX) #define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CANEN #define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CANRST #define CAN1_TX_IRQn CAN_TX_IRQn #define CAN1_RX0_IRQn CAN_RX0_IRQn #define CAN1_RX1_IRQn CAN_RX1_IRQn #define CAN1_TX_IRQHandler CAN_TX_IRQHandler #define CAN1_RX0_IRQHandler CAN_RX0_IRQHandler #define CAN1_RX1_IRQHandler CAN_RX1_IRQHandler #endif namespace ChibiOS_CAN { namespace { CanIface* ifaces[UAVCAN_STM32_NUM_IFACES] = { UAVCAN_NULLPTR #if UAVCAN_STM32_NUM_IFACES > 1 , UAVCAN_NULLPTR #endif }; inline void handleTxInterrupt(uavcan::uint8_t iface_index) { UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES); uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); if (utc_usec > 0) { utc_usec--; } if (ifaces[iface_index] != UAVCAN_NULLPTR) { ifaces[iface_index]->handleTxInterrupt(utc_usec); } else { UAVCAN_ASSERT(0); } } inline void handleRxInterrupt(uavcan::uint8_t iface_index, uavcan::uint8_t fifo_index) { UAVCAN_ASSERT(iface_index < UAVCAN_STM32_NUM_IFACES); uavcan::uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); if (utc_usec > 0) { utc_usec--; } if (ifaces[iface_index] != UAVCAN_NULLPTR) { ifaces[iface_index]->handleRxInterrupt(fifo_index, utc_usec); } else { UAVCAN_ASSERT(0); } } } // namespace /* * CanIface::RxQueue */ void CanIface::RxQueue::registerOverflow() { if (overflow_cnt_ < 0xFFFFFFFF) { overflow_cnt_++; } } void CanIface::RxQueue::push(const uavcan::CanFrame& frame, const uint64_t& utc_usec, uavcan::CanIOFlags flags) { buf_[in_].frame = frame; buf_[in_].utc_usec = utc_usec; buf_[in_].flags = flags; in_++; if (in_ >= capacity_) { in_ = 0; } len_++; if (len_ > capacity_) { len_ = capacity_; registerOverflow(); out_++; if (out_ >= capacity_) { out_ = 0; } } } void CanIface::RxQueue::pop(uavcan::CanFrame& out_frame, uavcan::uint64_t& out_utc_usec, uavcan::CanIOFlags& out_flags) { if (len_ > 0) { out_frame = buf_[out_].frame; out_utc_usec = buf_[out_].utc_usec; out_flags = buf_[out_].flags; out_++; if (out_ >= capacity_) { out_ = 0; } len_--; } else { UAVCAN_ASSERT(0); } } void CanIface::RxQueue::reset() { in_ = 0; out_ = 0; len_ = 0; overflow_cnt_ = 0; } /* * CanIface */ const uavcan::uint32_t CanIface::TSR_ABRQx[CanIface::NumTxMailboxes] = { bxcan::TSR_ABRQ0, bxcan::TSR_ABRQ1, bxcan::TSR_ABRQ2 }; int CanIface::computeTimings(const uavcan::uint32_t target_bitrate, Timings& out_timings) { if (target_bitrate < 1) { return -ErrInvalidBitRate; } /* * Hardware configuration */ const uavcan::uint32_t pclk = STM32_PCLK1; static const int MaxBS1 = 16; static const int MaxBS2 = 8; /* * Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG * CAN in Automation, 2003 * * According to the source, optimal quanta per bit are: * Bitrate Optimal Maximum * 1000 kbps 8 10 * 500 kbps 16 17 * 250 kbps 16 17 * 125 kbps 16 17 */ const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; UAVCAN_ASSERT(max_quanta_per_bit <= (MaxBS1 + MaxBS2)); static const int MaxSamplePointLocation = 900; /* * Computing (prescaler * BS): * BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual * BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified * let: * BS = 1 + BS1 + BS2 -- Number of time quanta per bit * PRESCALER_BS = PRESCALER * BS * ==> * PRESCALER_BS = PCLK / BITRATE */ const uavcan::uint32_t prescaler_bs = pclk / target_bitrate; /* * Searching for such prescaler value so that the number of quanta per bit is highest. */ uavcan::uint8_t bs1_bs2_sum = uavcan::uint8_t(max_quanta_per_bit - 1); while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { if (bs1_bs2_sum <= 2) { return -ErrInvalidBitRate; // No solution } bs1_bs2_sum--; } const uavcan::uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); if ((prescaler < 1U) || (prescaler > 1024U)) { return -ErrInvalidBitRate; // No solution } /* * Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. * We need to find the values so that the sample point is as close as possible to the optimal value. * * Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) * {{bs2 -> (1 + bs1)/7}} * * Hence: * bs2 = (1 + bs1) / 7 * bs1 = (7 * bs1_bs2_sum - 1) / 8 * * Sample point location can be computed as follows: * Sample point location = (1 + bs1) / (1 + bs1 + bs2) * * Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: * - With rounding to nearest * - With rounding to zero */ struct BsPair { uavcan::uint8_t bs1; uavcan::uint8_t bs2; uavcan::uint16_t sample_point_permill; BsPair() : bs1(0), bs2(0), sample_point_permill(0) { } BsPair(uavcan::uint8_t bs1_bs2_sum, uavcan::uint8_t arg_bs1) : bs1(arg_bs1), bs2(uavcan::uint8_t(bs1_bs2_sum - bs1)), sample_point_permill(uavcan::uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) { UAVCAN_ASSERT(bs1_bs2_sum > arg_bs1); } bool isValid() const { return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); } }; // First attempt with rounding to nearest BsPair solution(bs1_bs2_sum, uavcan::uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); if (solution.sample_point_permill > MaxSamplePointLocation) { // Second attempt with rounding to zero solution = BsPair(bs1_bs2_sum, uavcan::uint8_t((7 * bs1_bs2_sum - 1) / 8)); } /* * Final validation * Helpful Python: * def sample_point_from_btr(x): * assert 0b0011110010000000111111000000000 & x == 0 * ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 * return (1+ts1+1)/(1+ts1+1+ts2+1) * */ if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { UAVCAN_ASSERT(0); return -ErrLogic; } UAVCAN_STM32_LOG("Timings: quanta/bit: %d, sample point location: %.1f%%", int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); out_timings.prescaler = uavcan::uint16_t(prescaler - 1U); out_timings.sjw = 0; // Which means one out_timings.bs1 = uavcan::uint8_t(solution.bs1 - 1); out_timings.bs2 = uavcan::uint8_t(solution.bs2 - 1); return 0; } uavcan::int16_t CanIface::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, uavcan::CanIOFlags flags) { if (frame.isErrorFrame() || frame.dlc > 8) { return -ErrUnsupportedFrame; } /* * Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because * it is possible that the highest-priority frame between select() and send() could have been * replaced with a lower priority one due to TX timeout. But we don't do this check because: * * - It is a highly unlikely scenario. * * - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new * frame can only have higher priority, which doesn't break the logic. * * - If high-priority frames are timing out in the TX queue, there's probably a lot of other * issues to take care of before this one becomes relevant. * * - It takes CPU time. Not just CPU time, but critical section time, which is expensive. */ CriticalSectionLocker lock; /* * Seeking for an empty slot */ uavcan::uint8_t txmailbox = 0xFF; if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) { txmailbox = 0; } else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) { txmailbox = 1; } else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) { txmailbox = 2; } else { return 0; // No transmission for you. } peak_tx_mailbox_index_ = uavcan::max(peak_tx_mailbox_index_, txmailbox); // Statistics /* * Setting up the mailbox */ bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox]; if (frame.isExtended()) { mb.TIR = ((frame.id & uavcan::CanFrame::MaskExtID) << 3) | bxcan::TIR_IDE; } else { mb.TIR = ((frame.id & uavcan::CanFrame::MaskStdID) << 21); } if (frame.isRemoteTransmissionRequest()) { mb.TIR |= bxcan::TIR_RTR; } mb.TDTR = frame.dlc; mb.TDHR = (uavcan::uint32_t(frame.data[7]) << 24) | (uavcan::uint32_t(frame.data[6]) << 16) | (uavcan::uint32_t(frame.data[5]) << 8) | (uavcan::uint32_t(frame.data[4]) << 0); mb.TDLR = (uavcan::uint32_t(frame.data[3]) << 24) | (uavcan::uint32_t(frame.data[2]) << 16) | (uavcan::uint32_t(frame.data[1]) << 8) | (uavcan::uint32_t(frame.data[0]) << 0); mb.TIR |= bxcan::TIR_TXRQ; // Go. /* * Registering the pending transmission so we can track its deadline and loopback it as needed */ TxItem& txi = pending_tx_[txmailbox]; txi.deadline = tx_deadline; txi.frame = frame; txi.loopback = (flags & uavcan::CanIOFlagLoopback) != 0; txi.abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0; txi.pending = true; return 1; } uavcan::int16_t CanIface::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) { out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps uavcan::uint64_t utc_usec = 0; { CriticalSectionLocker lock; if (rx_queue_.getLength() == 0) { return 0; } rx_queue_.pop(out_frame, utc_usec, out_flags); } out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec); return 1; } uavcan::int16_t CanIface::configureFilters(const uavcan::CanFilterConfig* filter_configs, uavcan::uint16_t num_configs) { if (num_configs <= NumFilters) { CriticalSectionLocker lock; can_->FMR |= bxcan::FMR_FINIT; // Slave (CAN2) gets half of the filters can_->FMR &= ~0x00003F00UL; can_->FMR |= static_cast(NumFilters) << 8; can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters can_->FM1R = 0; // Identifier Mask mode can_->FS1R = 0x7ffffff; // Single 32-bit for all const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters; if (num_configs == 0) { can_->FilterRegister[filter_start_index].FR1 = 0; can_->FilterRegister[filter_start_index].FR2 = 0; can_->FA1R = 1 << filter_start_index; } else { for (uint8_t i = 0; i < NumFilters; i++) { if (i < num_configs) { uint32_t id = 0; uint32_t mask = 0; const uavcan::CanFilterConfig* const cfg = filter_configs + i; if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) { id = (cfg->id & uavcan::CanFrame::MaskExtID) << 3; mask = (cfg->mask & uavcan::CanFrame::MaskExtID) << 3; id |= bxcan::RIR_IDE; } else { id = (cfg->id & uavcan::CanFrame::MaskStdID) << 21; // Regular std frames, nothing fancy. mask = (cfg->mask & uavcan::CanFrame::MaskStdID) << 21; // Boring. } if (cfg->id & uavcan::CanFrame::FlagRTR) { id |= bxcan::RIR_RTR; } if (cfg->mask & uavcan::CanFrame::FlagEFF) { mask |= bxcan::RIR_IDE; } if (cfg->mask & uavcan::CanFrame::FlagRTR) { mask |= bxcan::RIR_RTR; } can_->FilterRegister[filter_start_index + i].FR1 = id; can_->FilterRegister[filter_start_index + i].FR2 = mask; can_->FA1R |= (1 << (filter_start_index + i)); } else { can_->FA1R &= ~(1 << (filter_start_index + i)); } } } can_->FMR &= ~bxcan::FMR_FINIT; return 0; } return -ErrFilterNumConfigs; } bool CanIface::waitMsrINakBitStateChange(bool target_state) { const unsigned Timeout = 1000; for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) { const bool state = (can_->MSR & bxcan::MSR_INAK) != 0; if (state == target_state) { return true; } #if CH_KERNEL_MAJOR >= 5 ::chThdSleep(chTimeMS2I(1)); #else ::chThdSleep(MS2ST(1)); #endif } return false; } int CanIface::init(const uavcan::uint32_t bitrate, const OperatingMode mode) { /* * We need to silence the controller in the first order, otherwise it may interfere with the following operations. */ { CriticalSectionLocker lock; can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode can_->MCR |= bxcan::MCR_INRQ; // Request init can_->IER = 0; // Disable interrupts while initialization is in progress } if (!waitMsrINakBitStateChange(true)) { UAVCAN_STM32_LOG("MSR INAK not set"); can_->MCR = bxcan::MCR_RESET; return -ErrMsrInakNotSet; } /* * Object state - interrupts are disabled, so it's safe to modify it now */ rx_queue_.reset(); error_cnt_ = 0; served_aborts_cnt_ = 0; uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem()); peak_tx_mailbox_index_ = 0; had_activity_ = false; /* * CAN timings for this bitrate */ Timings timings; const int timings_res = computeTimings(bitrate, timings); if (timings_res < 0) { can_->MCR = bxcan::MCR_RESET; return timings_res; } UAVCAN_STM32_LOG("Timings: presc=%u sjw=%u bs1=%u bs2=%u", unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); /* * Hardware initialization (the hardware has already confirmed initialization mode, see above) */ can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648 can_->BTR = ((timings.sjw & 3U) << 24) | ((timings.bs1 & 15U) << 16) | ((timings.bs2 & 7U) << 20) | (timings.prescaler & 1023U) | ((mode == SilentMode) ? bxcan::BTR_SILM : 0); can_->IER = bxcan::IER_TMEIE | // TX mailbox empty bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty bxcan::IER_FMPIE1; // RX FIFO 1 is not empty can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode if (!waitMsrINakBitStateChange(false)) { UAVCAN_STM32_LOG("MSR INAK not cleared"); can_->MCR = bxcan::MCR_RESET; return -ErrMsrInakNotCleared; } /* * Default filter configuration */ if (self_index_ == 0) { can_->FMR |= bxcan::FMR_FINIT; can_->FMR &= 0xFFFFC0F1; can_->FMR |= static_cast(NumFilters) << 8; // Slave (CAN2) gets half of the filters can_->FFA1R = 0; // All assigned to FIFO0 by default can_->FM1R = 0; // Indentifier Mask mode #if UAVCAN_STM32_NUM_IFACES > 1 can_->FS1R = 0x7ffffff; // Single 32-bit for all can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything can_->FilterRegister[0].FR2 = 0; can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything can_->FilterRegister[NumFilters].FR2 = 0; can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface #else can_->FS1R = 0x1fff; can_->FilterRegister[0].FR1 = 0; can_->FilterRegister[0].FR2 = 0; can_->FA1R = 1; #endif can_->FMR &= ~bxcan::FMR_FINIT; } return 0; } void CanIface::handleTxMailboxInterrupt(uavcan::uint8_t mailbox_index, bool txok, const uavcan::uint64_t utc_usec) { UAVCAN_ASSERT(mailbox_index < NumTxMailboxes); had_activity_ = had_activity_ || txok; TxItem& txi = pending_tx_[mailbox_index]; if (txi.loopback && txok && txi.pending) { rx_queue_.push(txi.frame, utc_usec, uavcan::CanIOFlagLoopback); } txi.pending = false; } void CanIface::handleTxInterrupt(const uavcan::uint64_t utc_usec) { // TXOK == false means that there was a hardware failure if (can_->TSR & bxcan::TSR_RQCP0) { const bool txok = can_->TSR & bxcan::TSR_TXOK0; can_->TSR = bxcan::TSR_RQCP0; handleTxMailboxInterrupt(0, txok, utc_usec); } if (can_->TSR & bxcan::TSR_RQCP1) { const bool txok = can_->TSR & bxcan::TSR_TXOK1; can_->TSR = bxcan::TSR_RQCP1; handleTxMailboxInterrupt(1, txok, utc_usec); } if (can_->TSR & bxcan::TSR_RQCP2) { const bool txok = can_->TSR & bxcan::TSR_TXOK2; can_->TSR = bxcan::TSR_RQCP2; handleTxMailboxInterrupt(2, txok, utc_usec); } update_event_.signalFromInterrupt(); pollErrorFlagsFromISR(); #if UAVCAN_STM32_FREERTOS update_event_.yieldFromISR(); #endif } void CanIface::handleRxInterrupt(uavcan::uint8_t fifo_index, uavcan::uint64_t utc_usec) { UAVCAN_ASSERT(fifo_index < 2); volatile uavcan::uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R; if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) { UAVCAN_ASSERT(0); // Weird, IRQ is here but no data to read return; } /* * Register overflow as a hardware error */ if ((*rfr_reg & bxcan::RFR_FOVR) != 0) { error_cnt_++; } /* * Read the frame contents */ uavcan::CanFrame frame; const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index]; if ((rf.RIR & bxcan::RIR_IDE) == 0) { frame.id = uavcan::CanFrame::MaskStdID & (rf.RIR >> 21); } else { frame.id = uavcan::CanFrame::MaskExtID & (rf.RIR >> 3); frame.id |= uavcan::CanFrame::FlagEFF; } if ((rf.RIR & bxcan::RIR_RTR) != 0) { frame.id |= uavcan::CanFrame::FlagRTR; } frame.dlc = rf.RDTR & 15; frame.data[0] = uavcan::uint8_t(0xFF & (rf.RDLR >> 0)); frame.data[1] = uavcan::uint8_t(0xFF & (rf.RDLR >> 8)); frame.data[2] = uavcan::uint8_t(0xFF & (rf.RDLR >> 16)); frame.data[3] = uavcan::uint8_t(0xFF & (rf.RDLR >> 24)); frame.data[4] = uavcan::uint8_t(0xFF & (rf.RDHR >> 0)); frame.data[5] = uavcan::uint8_t(0xFF & (rf.RDHR >> 8)); frame.data[6] = uavcan::uint8_t(0xFF & (rf.RDHR >> 16)); frame.data[7] = uavcan::uint8_t(0xFF & (rf.RDHR >> 24)); *rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read /* * Store with timeout into the FIFO buffer and signal update event */ rx_queue_.push(frame, utc_usec, 0); slcan_router().route_frame_to_slcan(this, frame, utc_usec); had_activity_ = true; update_event_.signalFromInterrupt(); pollErrorFlagsFromISR(); #if UAVCAN_STM32_FREERTOS update_event_.yieldFromISR(); #endif } void CanIface::pollErrorFlagsFromISR() { const uavcan::uint8_t lec = uavcan::uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT); if (lec != 0) { can_->ESR = 0; error_cnt_++; // Serving abort requests for (int i = 0; i < NumTxMailboxes; i++) // Dear compiler, may I suggest you to unroll this loop please. { TxItem& txi = pending_tx_[i]; if (txi.pending && txi.abort_on_error) { can_->TSR = TSR_ABRQx[i]; txi.pending = false; served_aborts_cnt_++; } } } } void CanIface::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time) { CriticalSectionLocker lock; for (int i = 0; i < NumTxMailboxes; i++) { TxItem& txi = pending_tx_[i]; if (txi.pending && txi.deadline < current_time) { can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission txi.pending = false; error_cnt_++; } } } bool CanIface::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const { /* * We can accept more frames only if the following conditions are satisfied: * - There is at least one TX mailbox free (obvious enough); * - The priority of the new frame is higher than priority of all TX mailboxes. */ { static const uavcan::uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2; const uavcan::uint32_t tme = can_->TSR & TME; if (tme == TME) // All TX mailboxes are free (as in freedom). { return true; } if (tme == 0) // All TX mailboxes are busy transmitting. { return false; } } /* * The second condition requires a critical section. */ CriticalSectionLocker lock; for (int mbx = 0; mbx < NumTxMailboxes; mbx++) { if (pending_tx_[mbx].pending && !frame.priorityHigherThan(pending_tx_[mbx].frame)) { return false; // There's a mailbox whose priority is higher or equal the priority of the new frame. } } return true; // This new frame will be added to a free TX mailbox in the next @ref send(). } bool CanIface::isRxBufferEmpty() const { CriticalSectionLocker lock; return rx_queue_.getLength() == 0; } uavcan::uint64_t CanIface::getErrorCount() const { CriticalSectionLocker lock; return error_cnt_ + rx_queue_.getOverflowCount(); } unsigned CanIface::getRxQueueLength() const { CriticalSectionLocker lock; return rx_queue_.getLength(); } bool CanIface::hadActivity() { CriticalSectionLocker lock; const bool ret = had_activity_; had_activity_ = false; return ret; } /* * CanDriver */ uavcan::CanSelectMasks CanDriver::makeSelectMasks(const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces]) const { uavcan::CanSelectMasks msk; for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { CanIface* iface = ifaces[if_int_to_gl_index_[i]]; msk.read |= (iface->isRxBufferEmpty() ? 0 : 1) << i; if (pending_tx[i] != UAVCAN_NULLPTR) { msk.write |= (iface->canAcceptNewTxFrame(*pending_tx[i]) ? 1 : 0) << i; } } return msk; } bool CanDriver::hasReadableInterfaces() const { for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { if (!ifaces[if_int_to_gl_index_[i]]->isRxBufferEmpty()) { return true; } } return false; } uavcan::int16_t CanDriver::select(uavcan::CanSelectMasks& inout_masks, const uavcan::CanFrame* (& pending_tx)[uavcan::MaxCanIfaces], const uavcan::MonotonicTime blocking_deadline) { const uavcan::CanSelectMasks in_masks = inout_masks; const uavcan::MonotonicTime time = clock::getMonotonic(); for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { CanIface* iface = ifaces[if_int_to_gl_index_[i]]; iface->discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots { CriticalSectionLocker cs_locker; iface->pollErrorFlagsFromISR(); } } inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events if ((inout_masks.read & in_masks.read) != 0 || (inout_masks.write & in_masks.write) != 0) { return 1; } (void)update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set return 1; // Return value doesn't matter as long as it is non-negative } #if UAVCAN_STM32_BAREMETAL || UAVCAN_STM32_FREERTOS static void nvicEnableVector(IRQn_Type irq, uint8_t prio) { #if !defined (USE_HAL_DRIVER) NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = irq; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = prio; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); #else HAL_NVIC_SetPriority(irq, prio, 0); HAL_NVIC_EnableIRQ(irq); #endif } #endif void CanDriver::initOnce() { /* * CAN1, CAN2 */ { CriticalSectionLocker lock; RCC->APB1ENR |= RCC_APB1ENR_CAN1EN; RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST; # if UAVCAN_STM32_NUM_IFACES > 1 RCC->APB1ENR |= RCC_APB1ENR_CAN2EN; RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST; # endif } /* * IRQ */ { CriticalSectionLocker lock; nvicEnableVector(CAN1_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN1_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN1_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); # if UAVCAN_STM32_NUM_IFACES > 1 nvicEnableVector(CAN2_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN2_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN2_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); # endif } } int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode) { int res = 0; UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast(bitrate), static_cast(mode)); static bool initialized_once = false; if (!initialized_once) { initialized_once = true; UAVCAN_STM32_LOG("First initialization"); initOnce(); } /* * CAN1 */ UAVCAN_STM32_LOG("Initing iface 0..."); ifaces[0] = &if0_; // This link must be initialized first, res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; if (res < 0) // a typical race condition. { UAVCAN_STM32_LOG("Iface 0 init failed %i", res); ifaces[0] = UAVCAN_NULLPTR; goto fail; } /* * CAN2 */ #if UAVCAN_STM32_NUM_IFACES > 1 UAVCAN_STM32_LOG("Initing iface 1..."); ifaces[1] = &if1_; // Same thing here. res = if1_.init(bitrate, mode); if (res < 0) { UAVCAN_STM32_LOG("Iface 1 init failed %i", res); ifaces[1] = UAVCAN_NULLPTR; goto fail; } #endif UAVCAN_STM32_LOG("CAN drv init OK"); UAVCAN_ASSERT(res >= 0); return res; fail: UAVCAN_STM32_LOG("CAN drv init failed %i", res); UAVCAN_ASSERT(res < 0); return res; } void CanDriver::initOnce(uavcan::uint8_t can_number, bool enable_irqs) { /* * CAN1, CAN2 */ { CriticalSectionLocker lock; if (can_number == 0) { RCC->APB1ENR |= RCC_APB1ENR_CAN1EN; RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST; } # if UAVCAN_STM32_NUM_IFACES > 1 else if (can_number == 1) { RCC->APB1ENR |= RCC_APB1ENR_CAN2EN; RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST; } # endif } if (!enable_irqs) { return; } /* * IRQ */ { CriticalSectionLocker lock; if (can_number == 0) { nvicEnableVector(CAN1_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN1_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN1_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); } # if UAVCAN_STM32_NUM_IFACES > 1 else if (can_number == 1) { nvicEnableVector(CAN2_TX_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN2_RX0_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); nvicEnableVector(CAN2_RX1_IRQn, UAVCAN_STM32_IRQ_PRIORITY_MASK); } # endif } } int CanDriver::init(const uavcan::uint32_t bitrate, const CanIface::OperatingMode mode, uavcan::uint8_t can_number) { int res = 0; UAVCAN_STM32_LOG("Bitrate %lu mode %d", static_cast(bitrate), static_cast(mode)); if (can_number > UAVCAN_STM32_NUM_IFACES) { res = -1; goto fail; } static bool initialized_once[UAVCAN_STM32_NUM_IFACES] = {false}; if (!initialized_once[can_number]) { initialized_once[can_number] = true; initialized_by_me_[can_number] = true; if (can_number == 1 && !initialized_once[0]) { UAVCAN_STM32_LOG("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it"); UAVCAN_STM32_LOG("Enabling CAN iface 0"); initOnce(0, false); UAVCAN_STM32_LOG("Initing iface 0..."); res = if0_.init(bitrate, mode); if (res < 0) { UAVCAN_STM32_LOG("Iface 0 init failed %i", res); goto fail; } } UAVCAN_STM32_LOG("Enabling CAN iface %d", can_number); initOnce(can_number, true); } else if (!initialized_by_me_[can_number]) { UAVCAN_STM32_LOG("CAN iface %d initialized in another CANDriver!", can_number); res = -2; goto fail; } if (can_number == 0) { /* * CAN1 */ UAVCAN_STM32_LOG("Initing iface 0..."); ifaces[0] = &if0_; // This link must be initialized first, res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; if (res < 0) // a typical race condition. { UAVCAN_STM32_LOG("Iface 0 init failed %i", res); ifaces[0] = UAVCAN_NULLPTR; goto fail; } } else if (can_number == 1) { /* * CAN2 */ #if UAVCAN_STM32_NUM_IFACES > 1 UAVCAN_STM32_LOG("Initing iface 1..."); ifaces[1] = &if1_; // Same thing here. res = if1_.init(bitrate, mode); if (res < 0) { UAVCAN_STM32_LOG("Iface 1 init failed %i", res); ifaces[1] = UAVCAN_NULLPTR; goto fail; } #endif } if_int_to_gl_index_[num_ifaces_++] = can_number; UAVCAN_STM32_LOG("CAN drv init OK"); UAVCAN_ASSERT(res >= 0); return res; fail: UAVCAN_STM32_LOG("CAN drv init failed %i", res); UAVCAN_ASSERT(res < 0); return res; } CanIface* CanDriver::getIface(uavcan::uint8_t iface_index) { if (iface_index < num_ifaces_) { return ifaces[if_int_to_gl_index_[iface_index]]; } return UAVCAN_NULLPTR; } bool CanDriver::hadActivity() { for (uavcan::uint8_t i = 0; i < num_ifaces_; i++) { if (ifaces[if_int_to_gl_index_[i]]->hadActivity()) { return true; } } return false; } } // namespace uavcan_stm32 /* * Interrupt handlers */ extern "C" { UAVCAN_STM32_IRQ_HANDLER(CAN1_TX_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(CAN1_TX_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleTxInterrupt(0); UAVCAN_STM32_IRQ_EPILOGUE(); } UAVCAN_STM32_IRQ_HANDLER(CAN1_RX0_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(CAN1_RX0_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleRxInterrupt(0, 0); UAVCAN_STM32_IRQ_EPILOGUE(); } UAVCAN_STM32_IRQ_HANDLER(CAN1_RX1_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(CAN1_RX1_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleRxInterrupt(0, 1); UAVCAN_STM32_IRQ_EPILOGUE(); } # if UAVCAN_STM32_NUM_IFACES > 1 #if !defined(CAN2_TX_IRQHandler) ||\ !defined(CAN2_RX0_IRQHandler) ||\ !defined(CAN2_RX1_IRQHandler) # error "Misconfigured build" #endif UAVCAN_STM32_IRQ_HANDLER(CAN2_TX_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(CAN2_TX_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleTxInterrupt(1); UAVCAN_STM32_IRQ_EPILOGUE(); } UAVCAN_STM32_IRQ_HANDLER(CAN2_RX0_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(CAN2_RX0_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleRxInterrupt(1, 0); UAVCAN_STM32_IRQ_EPILOGUE(); } UAVCAN_STM32_IRQ_HANDLER(CAN2_RX1_IRQHandler); UAVCAN_STM32_IRQ_HANDLER(CAN2_RX1_IRQHandler) { UAVCAN_STM32_IRQ_PROLOGUE(); ChibiOS_CAN::handleRxInterrupt(1, 1); UAVCAN_STM32_IRQ_EPILOGUE(); } # endif } // extern "C" #endif //HAL_WITH_UAVCAN