/* ArduCopter 1.3 - August 2010 www.ArduCopter.com Copyright (c) 2010. All rights reserved. An Open Source Arduino based multicopter. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "WProgram.h" /*******************************************************************/ // ArduPilot Mega specific hardware and software settings // // DO NOT EDIT unless you are absolytely sure of your doings. // User configurable settings are on UserConfig.h /*******************************************************************/ /**************************************************************/ // Special features that might disapear in future releases //#define jpframe // This is only Jani's special frame, you should never use unless you know what you are doing // As default this should be always checked off. /* APM Hardware definitions */ #define LED_Yellow 36 #define LED_Red 35 #define LED_Green 37 #define RELE_pin 47 #define SW1_pin 41 #define SW2_pin 40 //#define VDIV1 AN1 //#define VDIV2 AN2 //#define VDIV3 AN3 //#define VDIV4 AN4 //#define AN5 //#define AN6 // Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ uint8_t sensors[6] = {1, 2, 0, 4, 5, 6}; // For ArduPilot Mega Sensor Shield Hardware // Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ, MAGX, MAGY, MAGZ #ifndef jpframe int SENSOR_SIGN[]={ 1, -1, -1, -1, 1, 1, -1, -1, -1}; //{-1,1,-1,1,-1,1,-1,-1,-1}; #else int SENSOR_SIGN[]={ 1, -1, 1, -1, 1, 1, -1, -1, -1}; //{-1,1,-1,1,-1,1,-1,-1,-1}; #endif /* APM Hardware definitions, END */ /* General definitions */ #define TRUE 1 #define FALSE 0 #define ON 1 #define OFF 0 // ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step // ADXL335 Sensitivity(from datasheet) => 330mV/g, 0.8mV/ADC step => 330/0.8 = 412 // Tested value : 408 #define GRAVITY 408 //this equivalent to 1G in the raw data coming from the accelerometer #define Accel_Scale(x) x*(GRAVITY/9.81)//Scaling the raw data of the accel to actual acceleration in meters for seconds square #define ToRad(x) (x*0.01745329252) // *pi/180 #define ToDeg(x) (x*57.2957795131) // *180/pi // IDG500 Sensitivity (from datasheet) => 2.0mV/ยบ/s, 0.8mV/ADC step => 0.8/3.33 = 0.4 // Tested values : #define Gyro_Gain_X 0.4 //X axis Gyro gain #define Gyro_Gain_Y 0.41 //Y axis Gyro gain #define Gyro_Gain_Z 0.41 //Z axis Gyro gain #define Gyro_Scaled_X(x) x*ToRad(Gyro_Gain_X) //Return the scaled ADC raw data of the gyro in radians for second #define Gyro_Scaled_Y(x) x*ToRad(Gyro_Gain_Y) //Return the scaled ADC raw data of the gyro in radians for second #define Gyro_Scaled_Z(x) x*ToRad(Gyro_Gain_Z) //Return the scaled ADC raw data of the gyro in radians for second /*For debugging purposes*/ #define OUTPUTMODE 1 //If value = 1 will print the corrected data, 0 will print uncorrected data of the gyros (with drift), 2 Accel only data int AN[6]; //array that store the 6 ADC channels int AN_OFFSET[6]; //Array that store the Offset of the gyros and accelerometers int gyro_temp; float G_Dt=0.02; // Integration time for the gyros (DCM algorithm) float Accel_Vector[3]= {0, 0, 0}; //Store the acceleration in a vector float Accel_Vector_unfiltered[3]= {0, 0, 0}; //Store the acceleration in a vector float Gyro_Vector[3]= {0, 0, 0}; //Store the gyros rutn rate in a vector float Omega_Vector[3]= {0, 0, 0}; //Corrected Gyro_Vector data float Omega_P[3]= {0, 0, 0}; //Omega Proportional correction float Omega_I[3]= {0, 0, 0}; //Omega Integrator float Omega[3]= {0, 0, 0}; //float Accel_magnitude; //float Accel_weight; float errorRollPitch[3] = {0, 0, 0}; float errorYaw[3] = {0, 0, 0}; float errorCourse = 0; float COGX = 0; //Course overground X axis float COGY = 1; //Course overground Y axis float roll = 0; float pitch = 0; float yaw = 0; unsigned int counter = 0; float DCM_Matrix[3][3]= { { 1,0,0 }, { 0,1,0 }, { 0,0,1 }}; float Update_Matrix[3][3]={ { 0,1,2 }, { 3,4,5 }, { 6,7,8 }}; //Gyros here float Temporary_Matrix[3][3]={ { 0,0,0 }, { 0,0,0 }, { 0,0,0 }}; // GPS variables float speed_3d=0; int GPS_ground_speed=0; // Main timers long timer=0; long timer_old; long GPS_timer; long GPS_timer_old; float GPS_Dt=0.2; // GPS Dt // Attitude control variables float command_rx_roll=0; // User commands float command_rx_roll_old; float command_rx_roll_diff; float command_rx_pitch=0; float command_rx_pitch_old; float command_rx_pitch_diff; float command_rx_yaw=0; float command_rx_yaw_diff; int control_roll; // PID control results int control_pitch; int control_yaw; float K_aux; // Attitude PID controls float roll_I=0; float roll_D; float err_roll; float pitch_I=0; float pitch_D; float err_pitch; float yaw_I=0; float yaw_D; float err_yaw; //Position control long target_longitude; long target_lattitude; byte target_position; float gps_err_roll; float gps_err_roll_old; float gps_roll_D; float gps_roll_I=0; float gps_err_pitch; float gps_err_pitch_old; float gps_pitch_D; float gps_pitch_I=0; float command_gps_roll; float command_gps_pitch; //Altitude control int Initial_Throttle; int target_sonar_altitude; int err_altitude; int err_altitude_old; float command_altitude; float altitude_I; float altitude_D; //Pressure Sensor variables #ifdef UseBMP unsigned long abs_press = 0; unsigned long abs_press_filt = 0; unsigned long abs_press_gnd = 0; int ground_temperature = 0; // int temp_unfilt = 0; long ground_alt = 0; // Ground altitude from gps at startup in centimeters long press_alt = 0; // Pressure altitude #endif #define BATTERY_VOLTAGE(x) (x*(INPUT_VOLTAGE/1024.0))*VOLT_DIV_RATIO #define AIRSPEED_PIN 1 // Need to correct value #define BATTERY_PIN 1 // Need to correct value #define RELAY_PIN 47 #define LOW_VOLTAGE 11.4 // Pack voltage at which to trigger alarm #define INPUT_VOLTAGE 5.2 // (Volts) voltage your power regulator is feeding your ArduPilot to have an accurate pressure and battery level readings. (you need a multimeter to measure and set this of course) #define VOLT_DIV_RATIO 1.0 // Voltage divider ratio set with thru-hole resistor (see manual) float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage, initialized above threshold for filter // Sonar variables int Sonar_value=0; #define SonarToCm(x) (x*1.26) // Sonar raw value to centimeters int Sonar_Counter=0; // AP_mode : 1=> Position hold 2=>Stabilization assist mode (normal mode) byte AP_mode = 2; // Mode LED timers and variables, used to blink LED_Green byte gled_status = HIGH; long gled_timer; int gled_speed; long t0; int num_iter; float aux_debug; // Radio definitions int roll_mid; int pitch_mid; int yaw_mid; int Neutro_yaw; int ch_roll; int ch_pitch; int ch_throttle; int ch_yaw; int ch_aux; int ch_aux2; int frontMotor; int backMotor; int leftMotor; int rightMotor; byte motorArmed = 0; int minThrottle = 0; // Serial communication char queryType; long tlmTimer = 0; // Arming/Disarming uint8_t Arming_counter=0; uint8_t Disarming_counter=0;