/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_SmartRTL.h" #include <AP_AHRS/AP_AHRS.h> #include <AP_Logger/AP_Logger.h> #include <GCS_MAVLink/GCS.h> extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_SmartRTL::var_info[] = { // @Param: ACCURACY // @DisplayName: SmartRTL accuracy // @Description: SmartRTL accuracy. The minimum distance between points. // @Units: m // @Range: 0 10 // @User: Advanced AP_GROUPINFO("ACCURACY", 0, AP_SmartRTL, _accuracy, SMARTRTL_ACCURACY_DEFAULT), // @Param: POINTS // @DisplayName: SmartRTL maximum number of points on path // @Description: SmartRTL maximum number of points on path. Set to 0 to disable SmartRTL. 100 points consumes about 3k of memory. // @Range: 0 500 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("POINTS", 1, AP_SmartRTL, _points_max, SMARTRTL_POINTS_DEFAULT), AP_GROUPEND }; /* * This library is used for the Safe Return-to-Launch feature. The vehicle's * position (aka "bread crumbs") are stored into an array in memory at * regular intervals. After a certain number of bread crumbs have been * stored and space within the array is low, clean-up algorithms are run to * reduce the total number of points. When Safe-RTL is initiated by the * vehicle code, a more thorough cleanup runs and the resulting path is fed * into navigation controller to return the vehicle to home. * * The cleanup consists of two parts, pruning and simplification: * * 1. Pruning calculates the closest distance between two line segments formed * by two pairs of sequential points, and then cuts out anything between two * points when their line segments get close. This algorithm will never * compare two consecutive line segments. Obviously the segments (p1,p2) and * (p2,p3) will get very close (they touch), but there would be nothing to * trim between them. * * 2. Simplification uses the Ramer-Douglas-Peucker algorithm. See Wikipedia * for a more complete description. * * The simplification and pruning algorithms run in the background and do not * alter the path in memory. Two definitions, SMARTRTL_SIMPLIFY_TIME_US and * SMARTRTL_PRUNING_LOOP_TIME_US are used to limit how long each algorithm will * be run before they save their state and return. * * Both algorithms are "anytime algorithms" meaning they can be interrupted * before they complete which is helpful when memory is filling up and we just * need to quickly identify a handful of points which can be deleted. * * Once the algorithms have completed the simplify.complete and * prune.complete flags are set to true. The "thorough cleanup" procedure, * which is run as the vehicle initiates the SmartRTL flight mode, waits for * these flags to become true. This can force the vehicle to pause for a few * seconds before initiating the return journey. */ AP_SmartRTL::AP_SmartRTL(bool example_mode) : _example_mode(example_mode) { AP_Param::setup_object_defaults(this, var_info); _simplify.bitmask.setall(); } // initialise safe rtl including setting up background processes void AP_SmartRTL::init() { // protect against repeated call to init if (_path != nullptr) { return; } // constrain the path length, in case the user decided to make the path unreasonably long. _points_max = constrain_int16(_points_max, 0, SMARTRTL_POINTS_MAX); // check if user has disabled SmartRTL if (_points_max == 0 || !is_positive(_accuracy)) { return; } // allocate arrays _path = (Vector3f*)calloc(_points_max, sizeof(Vector3f)); _prune.loops_max = _points_max * SMARTRTL_PRUNING_LOOP_BUFFER_LEN_MULT; _prune.loops = (prune_loop_t*)calloc(_prune.loops_max, sizeof(prune_loop_t)); _simplify.stack_max = _points_max * SMARTRTL_SIMPLIFY_STACK_LEN_MULT; _simplify.stack = (simplify_start_finish_t*)calloc(_simplify.stack_max, sizeof(simplify_start_finish_t)); // check if memory allocation failed if (_path == nullptr || _prune.loops == nullptr || _simplify.stack == nullptr) { log_action(SRTL_DEACTIVATED_INIT_FAILED); gcs().send_text(MAV_SEVERITY_WARNING, "SmartRTL deactivated: init failed"); free(_path); free(_prune.loops); free(_simplify.stack); return; } _path_points_max = _points_max; // when running the example sketch, we want the cleanup tasks to run when we tell them to, not in the background (so that they can be timed.) if (!_example_mode){ // register background cleanup to run in IO thread hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&AP_SmartRTL::run_background_cleanup, void)); } } // returns number of points on the path uint16_t AP_SmartRTL::get_num_points() const { return _path_points_count; } // get next point on the path to home, returns true on success bool AP_SmartRTL::pop_point(Vector3f& point) { // check we are active if (!_active) { return false; } // get semaphore if (!_path_sem.take_nonblocking()) { log_action(SRTL_POP_FAILED_NO_SEMAPHORE); return false; } // check we have another point if (_path_points_count == 0) { _path_sem.give(); return false; } // return last point and remove from path point = _path[--_path_points_count]; // record count of last point popped _path_points_completed_limit = _path_points_count; _path_sem.give(); return true; } // clear return path and set home location. This should be called as part of the arming procedure void AP_SmartRTL::set_home(bool position_ok) { Vector3f current_pos; position_ok &= AP::ahrs().get_relative_position_NED_origin(current_pos); set_home(position_ok, current_pos); } void AP_SmartRTL::set_home(bool position_ok, const Vector3f& current_pos) { if (_path == nullptr) { return; } // clear path _path_points_count = 0; // reset simplification and pruning. These functions access members that should normally only // be touched by the background thread but it will not be running because active should be false reset_simplification(); reset_pruning(); // don't continue if no position at take-off if (!position_ok) { return; } // save current position as first point in path if (!add_point(current_pos)) { return; } // successfully added point and reset path _last_good_position_ms = AP_HAL::millis(); _active = true; _home_saved = true; } // call this at 3hz (or higher) regardless of what mode the vehicle is in void AP_SmartRTL::update(bool position_ok, bool save_position) { // try to save home if not already saved if (position_ok && !_home_saved) { set_home(true); } if (!_active || !save_position) { return; } Vector3f current_pos; position_ok &= AP::ahrs().get_relative_position_NED_origin(current_pos); update(position_ok, current_pos); } void AP_SmartRTL::update(bool position_ok, const Vector3f& current_pos) { if (!_active) { return; } if (position_ok) { const uint32_t now = AP_HAL::millis(); _last_good_position_ms = now; // add the point if (add_point(current_pos)) { _last_position_save_ms = now; } else if (AP_HAL::millis() - _last_position_save_ms > SMARTRTL_TIMEOUT) { // deactivate after timeout due to failure to save points to path (most likely due to buffer filling up) deactivate(SRTL_DEACTIVATED_PATH_FULL_TIMEOUT, "buffer full"); } } else { // check for timeout due to bad position if (AP_HAL::millis() - _last_good_position_ms > SMARTRTL_TIMEOUT) { deactivate(SRTL_DEACTIVATED_BAD_POSITION_TIMEOUT, "bad position"); return; } } } // request thorough cleanup including simplification, pruning and removal of all unnecessary points // returns true if the thorough cleanup was completed, false if it has not yet completed // this method should be called repeatedly until it returns true before initiating the return journey bool AP_SmartRTL::request_thorough_cleanup(ThoroughCleanupType clean_type) { // this should never happen but just in case if (!_active) { return false; } // request thorough cleanup if (_thorough_clean_request_ms == 0) { _thorough_clean_request_ms = AP_HAL::millis(); if (clean_type != THOROUGH_CLEAN_DEFAULT) { _thorough_clean_type = clean_type; } return false; } // check if background thread has completed request if (_thorough_clean_complete_ms == _thorough_clean_request_ms) { _thorough_clean_request_ms = 0; return true; } return false; } // cancel request for thorough cleanup void AP_SmartRTL::cancel_request_for_thorough_cleanup() { _thorough_clean_request_ms = 0; } // // Private methods // // add point to end of path (if necessary), returns true on success bool AP_SmartRTL::add_point(const Vector3f& point) { // get semaphore if (!_path_sem.take_nonblocking()) { log_action(SRTL_ADD_FAILED_NO_SEMAPHORE, point); return false; } // check if we have traveled far enough if (_path_points_count > 0) { const Vector3f& last_pos = _path[_path_points_count-1]; if (last_pos.distance_squared(point) < sq(_accuracy.get())) { _path_sem.give(); return true; } } // check we have space in the path if (_path_points_count >= _path_points_max) { _path_sem.give(); log_action(SRTL_ADD_FAILED_PATH_FULL, point); return false; } // add point to path _path[_path_points_count++] = point; log_action(SRTL_POINT_ADD, point); _path_sem.give(); return true; } // run background cleanup - should be run regularly from the IO thread void AP_SmartRTL::run_background_cleanup() { if (!_active) { return; } // get semaphore if (!_path_sem.take_nonblocking()) { return; } // local copy of _path_points_count and _path_points_completed_limit const uint16_t path_points_count = _path_points_count; const uint16_t path_points_completed_limit = _path_points_completed_limit; _path_points_completed_limit = SMARTRTL_POINTS_MAX; _path_sem.give(); // check if thorough cleanup is required if (_thorough_clean_request_ms > 0) { // check if we have already completed the request if (_thorough_clean_complete_ms != _thorough_clean_request_ms) { if (thorough_cleanup(path_points_count, _thorough_clean_type)) { // record completion _thorough_clean_complete_ms = _thorough_clean_request_ms; } } // we do not perform any further detection or cleanup until the requester acknowledges // they have what they need by setting _thorough_clean_request_ms back to zero return; } // ensure clean complete time is zero _thorough_clean_complete_ms = 0; // perform routine cleanup which removes 10 to 50 points if possible routine_cleanup(path_points_count, path_points_completed_limit); // warn if buffer is about to be filled uint32_t now_ms = AP_HAL::millis(); if ((path_points_count >0) && (path_points_count >= _path_points_max - 9) && (now_ms - _last_low_space_notify_ms > 10000)) { gcs().send_text(MAV_SEVERITY_INFO, "SmartRTL Low on space!"); _last_low_space_notify_ms = now_ms; } } // routine cleanup is called regularly from run_background_cleanup // simplifies the path after SMARTRTL_CLEANUP_POINT_TRIGGER points (50 points) have been added OR // SMARTRTL_CLEANUP_POINT_MIN (10 points) have been added and the path has less than SMARTRTL_CLEANUP_START_MARGIN spaces (10 spaces) remaining // prunes the path if the path has less than SMARTRTL_CLEANUP_START_MARGIN spaces (10 spaces) remaining void AP_SmartRTL::routine_cleanup(uint16_t path_points_count, uint16_t path_points_completed_limit) { // if simplify is running, let it run to completion if (!_simplify.complete) { detect_simplifications(); return; } // remove simplified from path if required if (_simplify.removal_required) { remove_points_by_simplify_bitmask(); return; } // if necessary restart detect_pruning up to last point simplified if (_prune.complete) { restart_pruning_if_new_points(); } // if pruning is running, let it run to completion if (!_prune.complete) { detect_loops(); return; } // detect path shrinkage and reduce simplify and prune path_points_completed count if (_simplify.path_points_completed > path_points_completed_limit) { _simplify.path_points_completed = path_points_completed_limit; } if (_prune.path_points_completed > path_points_completed_limit) { _prune.path_points_completed = path_points_completed_limit; } // calculate the number of points we could simplify const uint16_t points_to_simplify = (path_points_count > _simplify.path_points_completed) ? (path_points_count - _simplify.path_points_completed) : 0 ; const bool low_on_space = (_path_points_max - path_points_count) <= SMARTRTL_CLEANUP_START_MARGIN; // if 50 points can be simplified or we are low on space and at least 10 points can be simplified if ((points_to_simplify >= SMARTRTL_CLEANUP_POINT_TRIGGER) || (low_on_space && (points_to_simplify >= SMARTRTL_CLEANUP_POINT_MIN))) { restart_simplification(path_points_count); return; } // we are low on space, prune if (low_on_space) { // remove at least 10 points remove_points_by_loops(SMARTRTL_CLEANUP_POINT_MIN); } } // thorough cleanup simplifies and prunes all loops. returns true if the cleanup was completed. // path_points_count is _path_points_count but passed in to avoid having to take the semaphore bool AP_SmartRTL::thorough_cleanup(uint16_t path_points_count, ThoroughCleanupType clean_type) { if (clean_type != THOROUGH_CLEAN_PRUNE_ONLY) { // restart simplify if new points have appeared on path if (_simplify.complete) { restart_simplify_if_new_points(path_points_count); } // if simplification is not complete, run it if (!_simplify.complete) { detect_simplifications(); return false; } // remove simplified points from path if required if (_simplify.removal_required) { remove_points_by_simplify_bitmask(); return false; } } if (clean_type != THOROUGH_CLEAN_SIMPLIFY_ONLY) { // if necessary restart detect_pruning up to last point simplified if (_prune.complete) { restart_pruning_if_new_points(); } // if pruning is not complete, run it if (!_prune.complete) { detect_loops(); return false; } // remove pruning points if (!remove_points_by_loops(SMARTRTL_POINTS_MAX)) { return false; } } return true; } // Simplifies a 3D path, according to the Ramer-Douglas-Peucker algorithm. // _simplify.complete is set to true when all simplifications on the path have been identified void AP_SmartRTL::detect_simplifications() { // complete immediately if only one segment if (_simplify.path_points_count < 3) { _simplify.complete = true; return; } // if not complete but also nothing to do, we must be restarting if (_simplify.stack_count == 0) { // reset to beginning state. add a single element in the array with: // start = first path point OR the index of the last already-simplified point // finish = final path point _simplify.stack[0].start = (_simplify.path_points_completed > 0) ? _simplify.path_points_completed - 1 : 0; _simplify.stack[0].finish = _simplify.path_points_count-1; _simplify.stack_count++; } const uint32_t start_time_us = AP_HAL::micros(); while (_simplify.stack_count > 0) { // while there is something to do // if this method has run for long enough, exit if (AP_HAL::micros() - start_time_us > SMARTRTL_SIMPLIFY_TIME_US) { return; } // pop last item off the simplify stack const simplify_start_finish_t tmp = _simplify.stack[--_simplify.stack_count]; const uint16_t start_index = tmp.start; const uint16_t end_index = tmp.finish; // find the point between start and end points that is farthest from the start-end line segment float max_dist = 0.0f; uint16_t farthest_point_index = start_index; for (uint16_t i = start_index + 1; i < end_index; i++) { // only check points that have not already been flagged for simplification if (_simplify.bitmask.get(i)) { const float dist = _path[i].distance_to_segment(_path[start_index], _path[end_index]); if (dist > max_dist) { farthest_point_index = i; max_dist = dist; } } } // if the farthest point is more than ACCURACY * 0.5 add two new elements to the _simplification_stack // so that on the next iteration we will check between start-to-farthestpoint and farthestpoint-to-end if (max_dist > SMARTRTL_SIMPLIFY_EPSILON) { // if the to-do list is full, give up on simplifying. This should never happen. if (_simplify.stack_count >= _simplify.stack_max) { _simplify.complete = true; return; } _simplify.stack[_simplify.stack_count++] = simplify_start_finish_t {start_index, farthest_point_index}; _simplify.stack[_simplify.stack_count++] = simplify_start_finish_t {farthest_point_index, end_index}; } else { // if the farthest point was closer than ACCURACY * 0.5 we can simplify all points between start and end for (uint16_t i = start_index + 1; i < end_index; i++) { _simplify.bitmask.clear(i); _simplify.removal_required = true; } } } _simplify.path_points_completed = _simplify.path_points_count; _simplify.complete = true; } /** * This method runs for the allotted time, and detects loops in a path. Any detected loops are added to _prune.loops, * this function does not alter the path in memory. It works by comparing the line segment between any two sequential points * to the line segment between any other two sequential points. If they get close enough, anything between them could be pruned. * * reset_pruning should have been called at least once before this function is called to setup the indexes (_prune.i, etc) */ void AP_SmartRTL::detect_loops() { // if there are less than 4 points (3 segments), mark complete if (_prune.path_points_count < 4) { _prune.complete = true; return; } // capture start time const uint32_t start_time_us = AP_HAL::micros(); // run for defined amount of time while (AP_HAL::micros() - start_time_us < SMARTRTL_PRUNING_LOOP_TIME_US) { // advance inner loop _prune.j++; if (_prune.j > _prune.i - 2) { // set inner loop back to first point _prune.j = 1; // reduce outer loop _prune.i--; // complete when outer loop has run out of new points to check if (_prune.i < 4 || _prune.i < _prune.path_points_completed) { _prune.complete = true; _prune.path_points_completed = _prune.path_points_count; return; } } // find the closest distance between two line segments and the mid-point dist_point dp = segment_segment_dist(_path[_prune.i], _path[_prune.i-1], _path[_prune.j-1], _path[_prune.j]); if (dp.distance < SMARTRTL_PRUNING_DELTA) { // if there is a loop here, add to loop array if (!add_loop(_prune.j, _prune.i-1, dp.midpoint)) { // if the buffer is full, stop trying to prune _prune.complete = true; } // set inner loop forward to trigger outer loop move to next segment _prune.j = _prune.i; } } } // restart simplify if new points have been added to path // path_points_count is _path_points_count but passed in to avoid having to take the semaphore void AP_SmartRTL::restart_simplify_if_new_points(uint16_t path_points_count) { // any difference in the number of points is because of new points being added to path if (_simplify.path_points_count != path_points_count) { restart_simplification(path_points_count); } } // reset pruning if new points have been simplified void AP_SmartRTL::restart_pruning_if_new_points() { // any difference in the number of points is because of new points being added to path if (_prune.path_points_count != _simplify.path_points_completed) { restart_pruning(_simplify.path_points_completed); } } // restart simplification algorithm so that it will check new points in the path void AP_SmartRTL::restart_simplification(uint16_t path_points_count) { _simplify.complete = false; _simplify.removal_required = false; _simplify.bitmask.setall(); _simplify.stack_count = 0; _simplify.path_points_count = path_points_count; } // reset simplification algorithm so that it will re-check all points in the path void AP_SmartRTL::reset_simplification() { restart_simplification(0); _simplify.path_points_completed = 0; } // restart pruning algorithm to check new points that have arrived void AP_SmartRTL::restart_pruning(uint16_t path_points_count) { _prune.complete = false; _prune.i = (path_points_count > 0) ? path_points_count - 1 : 0; _prune.j = 0; _prune.path_points_count = path_points_count; } // reset pruning algorithm so that it will re-check all points in the path void AP_SmartRTL::reset_pruning() { restart_pruning(0); _prune.loops_count = 0; // clear the loops that we've recorded _prune.path_points_completed = 0; } // remove all simplify-able points from the path void AP_SmartRTL::remove_points_by_simplify_bitmask() { // get semaphore before modifying path if (!_path_sem.take_nonblocking()) { return; } uint16_t dest = 1; uint16_t removed = 0; for (uint16_t src = 1; src < _path_points_count; src++) { if (!_simplify.bitmask.get(src)) { log_action(SRTL_POINT_SIMPLIFY, _path[src]); removed++; } else { _path[dest] = _path[src]; dest++; } } // reduce count of the number of points simplified if (_path_points_count > removed && _simplify.path_points_count > removed) { _path_points_count -= removed; _simplify.path_points_count -= removed; _simplify.path_points_completed = _simplify.path_points_count; } else { // this is an error that should never happen so deactivate deactivate(SRTL_DEACTIVATED_PROGRAM_ERROR, "program error"); } _path_sem.give(); // flag point removal is complete _simplify.bitmask.setall(); _simplify.removal_required = false; } // remove loops until at least num_point_to_delete have been removed from path // does not necessarily prune all loops // returns false if it failed to remove points (because it could not take semaphore) bool AP_SmartRTL::remove_points_by_loops(uint16_t num_points_to_remove) { // exit immediately if no loops to prune if (_prune.loops_count == 0) { return true; } // get semaphore before modifying path if (!_path_sem.take_nonblocking()) { return false; } uint16_t removed_points = 0; uint16_t i = _prune.loops_count; while ((i > 0) && (removed_points < num_points_to_remove)) { i--; prune_loop_t loop = _prune.loops[i]; // midpoint goes into start_index (this is the end point of the first segment) _path[loop.start_index] = loop.midpoint; // shift points after the end of the loop down by the number of points in the loop uint16_t loop_num_points_to_remove = loop.end_index - loop.start_index; for (uint16_t dest = loop.start_index + 1; dest < _path_points_count - loop_num_points_to_remove; dest++) { log_action(SRTL_POINT_PRUNE, _path[dest]); _path[dest] = _path[dest + loop_num_points_to_remove]; } if (_path_points_count > loop_num_points_to_remove) { _path_points_count -= loop_num_points_to_remove; removed_points += loop_num_points_to_remove; } else { // this is an error that should never happen so deactivate deactivate(SRTL_DEACTIVATED_PROGRAM_ERROR, "program error"); _path_sem.give(); // we return true so thorough_cleanup does not get stuck return true; } // fix the indices of any existing prune loops // we do not check for overlapping loops because add_loops should have caught them for (uint16_t loop_cnt = 0; loop_cnt < i; loop_cnt++) { if (_prune.loops[loop_cnt].start_index >= loop.end_index) { _prune.loops[loop_cnt].start_index -= loop_num_points_to_remove; } if (_prune.loops[loop_cnt].end_index >= loop.end_index) { _prune.loops[loop_cnt].end_index -= loop_num_points_to_remove; } } // remove last prune loop from array _prune.loops_count--; } _path_sem.give(); return true; } // add loop to loops array // returns true if loop added successfully, false if loop array is full // checks if loop overlaps with an existing loop, keeps only the longer loop bool AP_SmartRTL::add_loop(uint16_t start_index, uint16_t end_index, const Vector3f& midpoint) { // if the buffer is full, return failure if (_prune.loops_count >= _prune.loops_max) { return false; } // sanity check indices if (end_index <= start_index) { return false; } // create new loop structure and calculate length squared of loop prune_loop_t new_loop = {start_index, end_index, midpoint, 0.0f}; new_loop.length_squared = midpoint.distance_squared(_path[start_index]) + midpoint.distance_squared(_path[end_index]); for (uint16_t i = start_index; i < end_index; i++) { new_loop.length_squared += _path[i].distance_squared(_path[i+1]); } // look for overlapping loops and find their combined length bool overlapping_loops = false; float overlapping_loop_length = 0.0f; for (uint16_t loop_idx = 0; loop_idx < _prune.loops_count; loop_idx++) { if (loops_overlap(_prune.loops[loop_idx], new_loop)) { overlapping_loops = true; overlapping_loop_length += _prune.loops[loop_idx].length_squared; } } // handle overlapping loops if (overlapping_loops) { // if adding this loop would lengthen the path, discard the new loop but return success if (overlapping_loop_length > new_loop.length_squared) { return true; } // remove overlapping loops uint16_t dest_idx = 0; uint16_t removed = 0; for (uint16_t src_idx = 0; src_idx < _prune.loops_count; src_idx++) { if (loops_overlap(_prune.loops[src_idx], new_loop)) { removed++; } else { _prune.loops[dest_idx] = _prune.loops[src_idx]; dest_idx++; } } _prune.loops_count -= removed; } // add new loop to _prune.loops array _prune.loops[_prune.loops_count] = new_loop; _prune.loops_count++; return true; } /** * Returns the closest distance in 3D space between any part of two input segments, defined from p1 to p2 and from p3 to p4. * Also returns the point which is halfway between * * Limitation: This function does not work for parallel lines. In this case, dist_point.distance will be FLT_MAX. * This does not matter for the path cleanup algorithm because the pruning will still occur fine between the first * parallel segment and a segment which is directly before or after the second segment. */ AP_SmartRTL::dist_point AP_SmartRTL::segment_segment_dist(const Vector3f &p1, const Vector3f &p2, const Vector3f &p3, const Vector3f &p4) { const Vector3f line1 = p2-p1; const Vector3f line2 = p4-p3; const Vector3f line_start_diff = p1-p3; // from the beginning of the second line to the beginning of the first line // these don't really have a physical representation. They're only here to break up the longer formulas below. const float a = line1*line1; const float b = line1*line2; const float c = line2*line2; const float d = line1*line_start_diff; const float e = line2*line_start_diff; // the parameter for the position on line1 and line2 which define the closest points. float t1 = 0.0f; float t2 = 0.0f; // if lines are almost parallel, return a garbage answer. This is irrelevant, since the loop // could always be pruned start/end of the previous/subsequent line segment if (is_zero((a*c)-(b*b))) { return {FLT_MAX, Vector3f(0.0f, 0.0f, 0.0f)}; } t1 = (b*e-c*d)/(a*c-b*b); t2 = (a*e-b*d)/(a*c-b*b); // restrict both parameters between 0 and 1. t1 = constrain_float(t1, 0.0f, 1.0f); t2 = constrain_float(t2, 0.0f, 1.0f); // difference between two closest points const Vector3f dP = line_start_diff+line1*t1-line2*t2; const Vector3f midpoint = (p1+line1*t1 + p3+line2*t2)/2.0f; return {dP.length(), midpoint}; } // de-activate SmartRTL, send warning to GCS and logger void AP_SmartRTL::deactivate(SRTL_Actions action, const char *reason) { _active = false; log_action(action); gcs().send_text(MAV_SEVERITY_WARNING, "SmartRTL deactivated: %s", reason); } // logging void AP_SmartRTL::log_action(SRTL_Actions action, const Vector3f &point) { if (!_example_mode) { AP::logger().Write_SRTL(_active, _path_points_count, _path_points_max, action, point); } } // returns true if the two loops overlap (used within add_loop to determine which loops to keep or throw away) bool AP_SmartRTL::loops_overlap(const prune_loop_t &loop1, const prune_loop_t &loop2) const { // check if loop1 within loop2 if (loop1.start_index >= loop2.start_index && loop1.end_index <= loop2.end_index) { return true; } // check if loop2 within loop1 if (loop2.start_index >= loop1.start_index && loop2.end_index <= loop1.end_index) { return true; } // check for partial overlap (loop1's start OR end point is within loop2) const bool loop1_start_in_loop2 = (loop1.start_index >= loop2.start_index) && (loop1.start_index <= loop2.end_index); const bool loop1_end_in_loop2 = (loop1.end_index >= loop2.start_index) && (loop1.end_index <= loop2.end_index); if (loop1_start_in_loop2 != loop1_end_in_loop2) { return true; } // if we got here, no overlap return false; }