/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once /* this header holds a parameter structure for each vehicle type for parameters needed by multiple libraries */ #include "ModeReason.h" // reasons can't be defined in this header due to circular loops #include #include // board configuration library #include #include #include #include #include #include #include // Notify library #include #include #include // APM relay #include // RSSI Library #include #include // Serial manager library #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif class AP_Vehicle : public AP_HAL::HAL::Callbacks { public: AP_Vehicle() { if (_singleton) { AP_HAL::panic("Too many Vehicles"); } AP_Param::setup_object_defaults(this, var_info); _singleton = this; } /* Do not allow copies */ AP_Vehicle(const AP_Vehicle &other) = delete; AP_Vehicle &operator=(const AP_Vehicle&) = delete; static AP_Vehicle *get_singleton(); // setup() is called once during vehicle startup to initialise the // vehicle object and the objects it contains. The // AP_HAL_MAIN_CALLBACKS pragma creates a main(...) function // referencing an object containing setup() and loop() functions. // A vehicle is not expected to override setup(), but // subclass-specific initialisation can be done in init_ardupilot // which is called from setup(). void setup(void) override final; // HAL::Callbacks implementation. void loop() override final; // set_mode *must* set control_mode_reason virtual bool set_mode(const uint8_t new_mode, const ModeReason reason) = 0; virtual uint8_t get_mode() const = 0; ModeReason get_control_mode_reason() const { return control_mode_reason; } // perform any notifications required to indicate a mode change // failed due to a bad mode number being supplied. This can // happen for many reasons - bad mavlink packet and bad mode // parameters for example. void notify_no_such_mode(uint8_t mode_number); /* common parameters for fixed wing aircraft */ struct FixedWing { AP_Int8 throttle_min; AP_Int8 throttle_max; AP_Int8 throttle_slewrate; AP_Int8 throttle_cruise; AP_Int8 takeoff_throttle_max; AP_Int16 airspeed_min; AP_Int16 airspeed_max; AP_Int32 airspeed_cruise_cm; AP_Int32 min_gndspeed_cm; AP_Int8 crash_detection_enable; AP_Int16 roll_limit_cd; AP_Int16 pitch_limit_max_cd; AP_Int16 pitch_limit_min_cd; AP_Int8 autotune_level; AP_Int8 stall_prevention; AP_Int16 loiter_radius; struct Rangefinder_State { bool in_range:1; bool have_initial_reading:1; bool in_use:1; float initial_range; float correction; float initial_correction; float last_stable_correction; uint32_t last_correction_time_ms; uint8_t in_range_count; float height_estimate; float last_distance; }; // stages of flight enum FlightStage { FLIGHT_TAKEOFF = 1, FLIGHT_VTOL = 2, FLIGHT_NORMAL = 3, FLIGHT_LAND = 4, FLIGHT_ABORT_LAND = 7 }; }; /* common parameters for multicopters */ struct MultiCopter { AP_Int16 angle_max; }; void get_common_scheduler_tasks(const AP_Scheduler::Task*& tasks, uint8_t& num_tasks); // implementations *MUST* fill in all passed-in fields or we get // Valgrind errors virtual void get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) = 0; /* set the "likely flying" flag. This is not guaranteed to be accurate, but is the vehicle codes best guess as to the whether the vehicle is currently flying */ void set_likely_flying(bool b) { if (b && !likely_flying) { _last_flying_ms = AP_HAL::millis(); } likely_flying = b; } /* get the likely flying status. Returns true if the vehicle code thinks we are flying at the moment. Not guaranteed to be accurate */ bool get_likely_flying(void) const { return likely_flying; } /* return time in milliseconds since likely_flying was set true. Returns zero if likely_flying is currently false */ uint32_t get_time_flying_ms(void) const { if (!likely_flying) { return 0; } return AP_HAL::millis() - _last_flying_ms; } // returns true if the vehicle has crashed virtual bool is_crashed() const; #if AP_SCRIPTING_ENABLED /* methods to control vehicle for use by scripting */ virtual bool start_takeoff(float alt) { return false; } virtual bool set_target_location(const Location& target_loc) { return false; } virtual bool set_target_pos_NED(const Vector3f& target_pos, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative, bool terrain_alt) { return false; } virtual bool set_target_posvel_NED(const Vector3f& target_pos, const Vector3f& target_vel) { return false; } virtual bool set_target_posvelaccel_NED(const Vector3f& target_pos, const Vector3f& target_vel, const Vector3f& target_accel, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative) { return false; } virtual bool set_target_velocity_NED(const Vector3f& vel_ned) { return false; } virtual bool set_target_velaccel_NED(const Vector3f& target_vel, const Vector3f& target_accel, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative) { return false; } virtual bool set_target_angle_and_climbrate(float roll_deg, float pitch_deg, float yaw_deg, float climb_rate_ms, bool use_yaw_rate, float yaw_rate_degs) { return false; } // command throttle percentage and roll, pitch, yaw target // rates. For use with scripting controllers virtual bool set_target_throttle_rate_rpy(float throttle_pct, float roll_rate_dps, float pitch_rate_dps, float yaw_rate_dps) { return false; } // get target location (for use by scripting) virtual bool get_target_location(Location& target_loc) { return false; } // circle mode controls (only used by scripting with Copter) virtual bool get_circle_radius(float &radius_m) { return false; } virtual bool set_circle_rate(float rate_dps) { return false; } // set steering and throttle (-1 to +1) (for use by scripting with Rover) virtual bool set_steering_and_throttle(float steering, float throttle) { return false; } // support for NAV_SCRIPT_TIME mission command virtual bool nav_script_time(uint16_t &id, uint8_t &cmd, float &arg1, float &arg2) { return false; } virtual void nav_script_time_done(uint16_t id) {} #endif // AP_SCRIPTING_ENABLED // control outputs enumeration enum class ControlOutput { Roll = 1, Pitch = 2, Throttle = 3, Yaw = 4, Lateral = 5, MainSail = 6, WingSail = 7, Walking_Height = 8, Last_ControlOutput // place new values before this }; // get control output (for use in scripting) // returns true on success and control_value is set to a value in the range -1 to +1 virtual bool get_control_output(AP_Vehicle::ControlOutput control_output, float &control_value) { return false; } // write out harmonic notch log messages void write_notch_log_messages() const; // update the harmonic notch virtual void update_dynamic_notch() {}; // zeroing the RC outputs can prevent unwanted motor movement: virtual bool should_zero_rc_outputs_on_reboot() const { return false; } // reboot the vehicle in an orderly manner, doing various cleanups // and flashing LEDs as appropriate void reboot(bool hold_in_bootloader); /* get the distance to next wp in meters return false if failed or n/a */ virtual bool get_wp_distance_m(float &distance) const { return false; } /* get the current wp bearing in degrees return false if failed or n/a */ virtual bool get_wp_bearing_deg(float &bearing) const { return false; } /* get the current wp crosstrack error in meters return false if failed or n/a */ virtual bool get_wp_crosstrack_error_m(float &xtrack_error) const { return false; } #if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL AP_Frsky_Parameters frsky_parameters; #endif /* Returns the pan and tilt for use by onvif camera in scripting */ virtual bool get_pan_tilt_norm(float &pan_norm, float &tilt_norm) const { return false; } #if OSD_ENABLED // Returns roll and pitch for OSD Horizon, Plane overrides to correct for VTOL view and fixed wing TRIM_PITCH_CD virtual void get_osd_roll_pitch_rad(float &roll, float &pitch) const; #endif protected: virtual void init_ardupilot() = 0; virtual void load_parameters() = 0; virtual void set_control_channels() {} // board specific config AP_BoardConfig BoardConfig; #if HAL_MAX_CAN_PROTOCOL_DRIVERS // board specific config for CAN bus AP_CANManager can_mgr; #endif // main loop scheduler AP_Scheduler scheduler{FUNCTOR_BIND_MEMBER(&AP_Vehicle::fast_loop, void)}; virtual void fast_loop(); // IMU variables // Integration time; time last loop took to run float G_Dt; // sensor drivers AP_GPS gps; AP_Baro barometer; Compass compass; AP_InertialSensor ins; #if HAL_BUTTON_ENABLED AP_Button button; #endif RangeFinder rangefinder; AP_RSSI rssi; #if HAL_RUNCAM_ENABLED AP_RunCam runcam; #endif #if HAL_GYROFFT_ENABLED AP_GyroFFT gyro_fft; #endif AP_VideoTX vtx; AP_SerialManager serial_manager; AP_Relay relay; AP_ServoRelayEvents ServoRelayEvents; // notification object for LEDs, buzzers etc (parameter set to // false disables external leds) AP_Notify notify; // Inertial Navigation EKF AP_AHRS ahrs; #if HAL_HOTT_TELEM_ENABLED AP_Hott_Telem hott_telem; #endif #if HAL_VISUALODOM_ENABLED AP_VisualOdom visual_odom; #endif #if HAL_WITH_ESC_TELEM AP_ESC_Telem esc_telem; #endif #if HAL_MSP_ENABLED AP_MSP msp; #endif #if HAL_GENERATOR_ENABLED AP_Generator generator; #endif #if HAL_EXTERNAL_AHRS_ENABLED AP_ExternalAHRS externalAHRS; #endif #if HAL_SMARTAUDIO_ENABLED AP_SmartAudio smartaudio; #endif #if HAL_EFI_ENABLED // EFI Engine Monitor AP_EFI efi; #endif static const struct AP_Param::GroupInfo var_info[]; static const struct AP_Scheduler::Task scheduler_tasks[]; #if OSD_ENABLED void publish_osd_info(); #endif // update accel calibration void accel_cal_update(); ModeReason control_mode_reason = ModeReason::UNKNOWN; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SIM sitl; #endif private: // delay() callback that processing MAVLink packets static void scheduler_delay_callback(); // if there's been a watchdog reset, notify the world via a // statustext: void send_watchdog_reset_statustext(); // run notch update at either loop rate or 200Hz void update_dynamic_notch_at_specified_rate(); bool likely_flying; // true if vehicle is probably flying uint32_t _last_flying_ms; // time when likely_flying last went true uint32_t _last_notch_update_ms; // last time update_dynamic_notch() was run static AP_Vehicle *_singleton; bool done_safety_init; uint32_t _last_internal_errors; // backup of AP_InternalError::internal_errors bitmask }; namespace AP { AP_Vehicle *vehicle(); }; extern const AP_HAL::HAL& hal; extern const AP_Param::Info vehicle_var_info[]; #include "AP_Vehicle_Type.h"