/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "AP_Compass_AK8963.h"
#include
#define AK8963_I2C_ADDR 0x0c
#define AK8963_WIA 0x00
# define AK8963_Device_ID 0x48
#define AK8963_HXL 0x03
/* bit definitions for AK8963 CNTL1 */
#define AK8963_CNTL1 0x0A
# define AK8963_CONTINUOUS_MODE1 0x02
# define AK8963_CONTINUOUS_MODE2 0x06
# define AK8963_SELFTEST_MODE 0x08
# define AK8963_POWERDOWN_MODE 0x00
# define AK8963_FUSE_MODE 0x0f
# define AK8963_16BIT_ADC 0x10
# define AK8963_14BIT_ADC 0x00
#define AK8963_CNTL2 0x0B
# define AK8963_RESET 0x01
#define AK8963_ASAX 0x10
#define AK8963_MILLIGAUSS_SCALE 10.0f
struct PACKED sample_regs {
int16_t val[3];
uint8_t st2;
};
extern const AP_HAL::HAL &hal;
AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass, AP_AK8963_BusDriver *bus,
uint32_t dev_id)
: AP_Compass_Backend(compass)
, _bus(bus)
, _dev_id(dev_id)
{
_reset_filter();
}
AP_Compass_AK8963::~AP_Compass_AK8963()
{
delete _bus;
}
AP_Compass_Backend *AP_Compass_AK8963::probe(Compass &compass,
AP_HAL::OwnPtr dev)
{
AP_AK8963_BusDriver *bus = new AP_AK8963_BusDriver_HALDevice(std::move(dev));
if (!bus) {
return nullptr;
}
AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, bus, AP_COMPASS_TYPE_AK8963_I2C);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_Backend *AP_Compass_AK8963::probe_mpu9250(Compass &compass,
AP_HAL::OwnPtr dev)
{
AP_InertialSensor &ins = *AP_InertialSensor::get_instance();
/* Allow MPU9250 to shortcut auxiliary bus and host bus */
ins.detect_backends();
return probe(compass, std::move(dev));
}
AP_Compass_Backend *AP_Compass_AK8963::probe_mpu9250(Compass &compass, uint8_t mpu9250_instance)
{
AP_InertialSensor &ins = *AP_InertialSensor::get_instance();
AP_AK8963_BusDriver *bus =
new AP_AK8963_BusDriver_Auxiliary(ins, HAL_INS_MPU9250_SPI, mpu9250_instance, AK8963_I2C_ADDR);
if (!bus) {
return nullptr;
}
AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, bus, AP_COMPASS_TYPE_AK8963_MPU9250);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Compass_AK8963::init()
{
hal.scheduler->suspend_timer_procs();
AP_HAL::Semaphore *bus_sem = _bus->get_semaphore();
if (!bus_sem || !_bus->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
hal.console->printf("AK8963: Unable to get bus semaphore\n");
goto fail_sem;
}
if (!_bus->configure()) {
hal.console->printf("AK8963: Could not configure the bus\n");
goto fail;
}
if (!_check_id()) {
hal.console->printf("AK8963: Wrong id\n");
goto fail;
}
if (!_calibrate()) {
hal.console->printf("AK8963: Could not read calibration data\n");
goto fail;
}
if (!_setup_mode()) {
hal.console->printf("AK8963: Could not setup mode\n");
goto fail;
}
if (!_bus->start_measurements()) {
hal.console->printf("AK8963: Could not start measurements\n");
goto fail;
}
_initialized = true;
/* register the compass instance in the frontend */
_compass_instance = register_compass();
set_dev_id(_compass_instance, _dev_id);
/* timer needs to be called every 10ms so set the freq_div to 10 */
_timesliced = hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Compass_AK8963::_update, void), 10);
bus_sem->give();
hal.scheduler->resume_timer_procs();
return true;
fail:
bus_sem->give();
fail_sem:
hal.scheduler->resume_timer_procs();
return false;
}
void AP_Compass_AK8963::read()
{
if (!_initialized) {
return;
}
if (_accum_count == 0) {
/* We're not ready to publish*/
return;
}
hal.scheduler->suspend_timer_procs();
auto field = _get_filtered_field();
_reset_filter();
hal.scheduler->resume_timer_procs();
publish_filtered_field(field, _compass_instance);
}
Vector3f AP_Compass_AK8963::_get_filtered_field() const
{
Vector3f field(_mag_x_accum, _mag_y_accum, _mag_z_accum);
field /= _accum_count;
return field;
}
void AP_Compass_AK8963::_reset_filter()
{
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0;
_accum_count = 0;
}
void AP_Compass_AK8963::_make_adc_sensitivity_adjustment(Vector3f& field) const
{
static const float ADC_16BIT_RESOLUTION = 0.15f;
field *= ADC_16BIT_RESOLUTION;
}
void AP_Compass_AK8963::_make_factory_sensitivity_adjustment(Vector3f& field) const
{
field.x *= _magnetometer_ASA[0];
field.y *= _magnetometer_ASA[1];
field.z *= _magnetometer_ASA[2];
}
void AP_Compass_AK8963::_update()
{
struct sample_regs regs;
Vector3f raw_field;
uint32_t time_us = AP_HAL::micros();
if (!_timesliced &&
AP_HAL::micros() - _last_update_timestamp < 10000) {
goto end;
}
if (!_bus->get_semaphore()->take_nonblocking()) {
goto end;
}
if (!_bus->block_read(AK8963_HXL, (uint8_t *) ®s, sizeof(regs))) {
goto fail;
}
/* Check for overflow. See AK8963's datasheet, section
* 6.4.3.6 - Magnetic Sensor Overflow. */
if ((regs.st2 & 0x08)) {
goto fail;
}
raw_field = Vector3f(regs.val[0], regs.val[1], regs.val[2]);
if (is_zero(raw_field.x) && is_zero(raw_field.y) && is_zero(raw_field.z)) {
goto fail;
}
_make_factory_sensitivity_adjustment(raw_field);
_make_adc_sensitivity_adjustment(raw_field);
raw_field *= AK8963_MILLIGAUSS_SCALE;
// rotate raw_field from sensor frame to body frame
rotate_field(raw_field, _compass_instance);
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO
/*
the disco has a very challenging magnetic environment around the
AK8975. The offsets are very large, and prevent calibration
completing even with a large fitness. The following brings the
values to within range of what the on-board calibrator can
handle
*/
raw_field.x -= 350;
raw_field.z -= 1800;
#endif
// publish raw_field (uncorrected point sample) for calibration use
publish_raw_field(raw_field, time_us, _compass_instance);
// correct raw_field for known errors
correct_field(raw_field, _compass_instance);
_mag_x_accum += raw_field.x;
_mag_y_accum += raw_field.y;
_mag_z_accum += raw_field.z;
_accum_count++;
if (_accum_count == 10) {
_mag_x_accum /= 2;
_mag_y_accum /= 2;
_mag_z_accum /= 2;
_accum_count = 5;
}
_last_update_timestamp = AP_HAL::micros();
fail:
_bus->get_semaphore()->give();
end:
return;
}
bool AP_Compass_AK8963::_check_id()
{
for (int i = 0; i < 5; i++) {
uint8_t deviceid = 0;
/* Read AK8963's id */
if (_bus->register_read(AK8963_WIA, &deviceid) &&
deviceid == AK8963_Device_ID) {
return true;
}
}
return false;
}
bool AP_Compass_AK8963::_setup_mode() {
return _bus->register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | AK8963_16BIT_ADC);
}
bool AP_Compass_AK8963::_reset()
{
return _bus->register_write(AK8963_CNTL2, AK8963_RESET);
}
bool AP_Compass_AK8963::_calibrate()
{
/* Enable FUSE-mode in order to be able to read calibration data */
_bus->register_write(AK8963_CNTL1, AK8963_FUSE_MODE | AK8963_16BIT_ADC);
uint8_t response[3];
_bus->block_read(AK8963_ASAX, response, 3);
for (int i = 0; i < 3; i++) {
float data = response[i];
_magnetometer_ASA[i] = ((data - 128) / 256 + 1);
}
return true;
}
/* AP_HAL::I2CDevice implementation of the AK8963 */
AP_AK8963_BusDriver_HALDevice::AP_AK8963_BusDriver_HALDevice(AP_HAL::OwnPtr dev)
: _dev(std::move(dev))
{
}
bool AP_AK8963_BusDriver_HALDevice::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
return _dev->read_registers(reg, buf, size);
}
bool AP_AK8963_BusDriver_HALDevice::register_read(uint8_t reg, uint8_t *val)
{
return _dev->read_registers(reg, val, 1);
}
bool AP_AK8963_BusDriver_HALDevice::register_write(uint8_t reg, uint8_t val)
{
return _dev->write_register(reg, val);
}
AP_HAL::Semaphore *AP_AK8963_BusDriver_HALDevice::get_semaphore()
{
return _dev->get_semaphore();
}
/* AK8963 on an auxiliary bus of IMU driver */
AP_AK8963_BusDriver_Auxiliary::AP_AK8963_BusDriver_Auxiliary(AP_InertialSensor &ins, uint8_t backend_id,
uint8_t backend_instance, uint8_t addr)
{
/*
* Only initialize members. Fails are handled by configure or while
* getting the semaphore
*/
_bus = ins.get_auxiliary_bus(backend_id, backend_instance);
if (!_bus) {
return;
}
_slave = _bus->request_next_slave(addr);
}
AP_AK8963_BusDriver_Auxiliary::~AP_AK8963_BusDriver_Auxiliary()
{
/* After started it's owned by AuxiliaryBus */
if (!_started) {
delete _slave;
}
}
bool AP_AK8963_BusDriver_Auxiliary::block_read(uint8_t reg, uint8_t *buf, uint32_t size)
{
if (_started) {
/*
* We can only read a block when reading the block of sample values -
* calling with any other value is a mistake
*/
assert(reg == AK8963_HXL);
int n = _slave->read(buf);
return n == static_cast(size);
}
int r = _slave->passthrough_read(reg, buf, size);
return r > 0 && static_cast(r) == size;
}
bool AP_AK8963_BusDriver_Auxiliary::register_read(uint8_t reg, uint8_t *val)
{
return _slave->passthrough_read(reg, val, 1) == 1;
}
bool AP_AK8963_BusDriver_Auxiliary::register_write(uint8_t reg, uint8_t val)
{
return _slave->passthrough_write(reg, val) == 1;
}
AP_HAL::Semaphore *AP_AK8963_BusDriver_Auxiliary::get_semaphore()
{
return _bus ? _bus->get_semaphore() : nullptr;
}
bool AP_AK8963_BusDriver_Auxiliary::configure()
{
if (!_bus || !_slave) {
return false;
}
return true;
}
bool AP_AK8963_BusDriver_Auxiliary::start_measurements()
{
if (_bus->register_periodic_read(_slave, AK8963_HXL, sizeof(sample_regs)) < 0) {
return false;
}
_started = true;
return true;
}
#endif // CONFIG_HAL_BOARD