// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include "AC_AttitudeControl_Multi.h" #include #include // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl_Multi::var_info[] = { // parameters from parent vehicle AP_NESTEDGROUPINFO(AC_AttitudeControl, 0), // @Param: RAT_RLL_P // @DisplayName: Roll axis rate controller P gain // @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output // @Range: 0.08 0.30 // @Increment: 0.005 // @User: Standard // @Param: RAT_RLL_I // @DisplayName: Roll axis rate controller I gain // @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate // @Range: 0.01 0.5 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_IMAX // @DisplayName: Roll axis rate controller I gain maximum // @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @Units: Percent // @User: Standard // @Param: RAT_RLL_D // @DisplayName: Roll axis rate controller D gain // @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate // @Range: 0.0 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FILT // @DisplayName: Roll axis rate conroller input frequency in Hz // @Description: Roll axis rate conroller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 1, AC_AttitudeControl_Multi, AC_PID), // @Param: RAT_PIT_P // @DisplayName: Pitch axis rate controller P gain // @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output // @Range: 0.08 0.30 // @Increment: 0.005 // @User: Standard // @Param: RAT_PIT_I // @DisplayName: Pitch axis rate controller I gain // @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate // @Range: 0.01 0.5 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_IMAX // @DisplayName: Pitch axis rate controller I gain maximum // @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @Units: Percent // @User: Standard // @Param: RAT_PIT_D // @DisplayName: Pitch axis rate controller D gain // @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate // @Range: 0.0 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FILT // @DisplayName: Pitch axis rate conroller input frequency in Hz // @Description: Pitch axis rate conroller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 2, AC_AttitudeControl_Multi, AC_PID), // @Param: RAT_YAW_P // @DisplayName: Yaw axis rate controller P gain // @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output // @Range: 0.10 0.50 // @Increment: 0.005 // @User: Standard // @Param: RAT_YAW_I // @DisplayName: Yaw axis rate controller I gain // @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate // @Range: 0.010 0.05 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_IMAX // @DisplayName: Yaw axis rate controller I gain maximum // @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @Units: Percent // @User: Standard // @Param: RAT_YAW_D // @DisplayName: Yaw axis rate controller D gain // @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate // @Range: 0.000 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FILT // @DisplayName: Yaw axis rate conroller input frequency in Hz // @Description: Yaw axis rate conroller input frequency in Hz // @Range: 1 100 // @Increment: 1 // @Units: Hz AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 3, AC_AttitudeControl_Multi, AC_PID), // @Param: THR_MIX_MIN // @DisplayName: Throttle Mix Minimum // @Description: Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle) // @Range: 0.1 0.25 // @User: Advanced AP_GROUPINFO("THR_MIX_MIN", 4, AC_AttitudeControl_Multi, _thr_mix_min, AC_ATTITUDE_CONTROL_MIN_DEFAULT), // @Param: THR_MIX_MAX // @DisplayName: Throttle Mix Maximum // @Description: Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle) // @Range: 0.5 0.9 // @User: Advanced AP_GROUPINFO("THR_MIX_MAX", 5, AC_AttitudeControl_Multi, _thr_mix_max, AC_ATTITUDE_CONTROL_MAX_DEFAULT), AP_GROUPEND }; AC_AttitudeControl_Multi::AC_AttitudeControl_Multi(AP_AHRS &ahrs, const AP_Vehicle::MultiCopter &aparm, AP_MotorsMulticopter& motors, float dt) : AC_AttitudeControl(ahrs, aparm, motors, dt), _motors_multi(motors), _pid_rate_roll(AC_ATC_MULTI_RATE_RP_P, AC_ATC_MULTI_RATE_RP_I, AC_ATC_MULTI_RATE_RP_D, AC_ATC_MULTI_RATE_RP_IMAX, AC_ATC_MULTI_RATE_RP_FILT_HZ, dt), _pid_rate_pitch(AC_ATC_MULTI_RATE_RP_P, AC_ATC_MULTI_RATE_RP_I, AC_ATC_MULTI_RATE_RP_D, AC_ATC_MULTI_RATE_RP_IMAX, AC_ATC_MULTI_RATE_RP_FILT_HZ, dt), _pid_rate_yaw(AC_ATC_MULTI_RATE_YAW_P, AC_ATC_MULTI_RATE_YAW_I, AC_ATC_MULTI_RATE_YAW_D, AC_ATC_MULTI_RATE_YAW_IMAX, AC_ATC_MULTI_RATE_YAW_FILT_HZ, dt) { AP_Param::setup_object_defaults(this, var_info); } // Update Alt_Hold angle maximum void AC_AttitudeControl_Multi::update_althold_lean_angle_max(float throttle_in) { // calc maximum tilt angle based on throttle float thr_max = _motors_multi.get_throttle_thrust_max(); // divide by zero check if (is_zero(thr_max)) { _althold_lean_angle_max = 0.0f; return; } float althold_lean_angle_max = acos(constrain_float(_throttle_in/(AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX * thr_max), 0.0f, 1.0f)); _althold_lean_angle_max = _althold_lean_angle_max + (_dt/(_dt+_angle_limit_tc))*(althold_lean_angle_max-_althold_lean_angle_max); } void AC_AttitudeControl_Multi::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff) { _throttle_in = throttle_in; update_althold_lean_angle_max(throttle_in); _motors.set_throttle_filter_cutoff(filter_cutoff); if (apply_angle_boost) { // Apply angle boost throttle_in = get_throttle_boosted(throttle_in); }else{ // Clear angle_boost for logging purposes _angle_boost = 0.0f; } _motors.set_throttle(throttle_in); _motors.set_throttle_avg_max(get_throttle_avg_max(MAX(throttle_in, _throttle_in))); } // returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1 float AC_AttitudeControl_Multi::get_throttle_boosted(float throttle_in) { if (!_angle_boost_enabled) { _angle_boost = 0; return throttle_in; } // inverted_factor is 1 for tilt angles below 60 degrees // inverted_factor reduces from 1 to 0 for tilt angles between 60 and 90 degrees float cos_tilt = _ahrs.cos_pitch() * _ahrs.cos_roll(); float inverted_factor = constrain_float(2.0f*cos_tilt, 0.0f, 1.0f); float boost_factor = 1.0f/constrain_float(cos_tilt, 0.5f, 1.0f); float throttle_out = throttle_in*inverted_factor*boost_factor; _angle_boost = constrain_float(throttle_out - throttle_in,-1.0f,1.0f); return throttle_out; } // returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1 float AC_AttitudeControl_Multi::get_throttle_avg_max(float throttle_in) { return MAX(throttle_in, throttle_in*MAX(0.0f,1.0f-_throttle_rpy_mix)+_motors.get_throttle_hover()*_throttle_rpy_mix); } // update_throttle_rpy_mix - slew set_throttle_rpy_mix to requested value void AC_AttitudeControl_Multi::update_throttle_rpy_mix() { // slew _throttle_rpy_mix to _throttle_rpy_mix_desired if (_throttle_rpy_mix < _throttle_rpy_mix_desired) { // increase quickly (i.e. from 0.1 to 0.9 in 0.4 seconds) _throttle_rpy_mix += MIN(2.0f*_dt, _throttle_rpy_mix_desired-_throttle_rpy_mix); } else if (_throttle_rpy_mix > _throttle_rpy_mix_desired) { // reduce more slowly (from 0.9 to 0.1 in 1.6 seconds) _throttle_rpy_mix -= MIN(0.5f*_dt, _throttle_rpy_mix-_throttle_rpy_mix_desired); } _throttle_rpy_mix = constrain_float(_throttle_rpy_mix, 0.1f, 1.0f); } void AC_AttitudeControl_Multi::rate_controller_run() { // move throttle vs attitude mixing towards desired (called from here because this is conveniently called on every iteration) update_throttle_rpy_mix(); _motors.set_roll(rate_target_to_motor_roll(_rate_target_ang_vel.x)); _motors.set_pitch(rate_target_to_motor_pitch(_rate_target_ang_vel.y)); _motors.set_yaw(rate_target_to_motor_yaw(_rate_target_ang_vel.z)); control_monitor_update(); }