// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // // AP_IMU_INS.cpp - IMU Sensor Library for Ardupilot Mega // Code by Michael Smith, Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // /// @file AP_IMU_INS.cpp /// @brief IMU driver on top of an INS driver. Provides calibration for the // inertial sensors (gyro and accel) #include #include #include #include "AP_IMU_INS.h" // XXX secret knowledge about the APM/oilpan wiring // #define A_LED_PIN 37 #define C_LED_PIN 35 void AP_IMU_INS::init( Start_style style, void (*delay_cb)(unsigned long t), AP_PeriodicProcess * scheduler ) { _ins->init(scheduler); // if we are warm-starting, load the calibration data from EEPROM and go // if (WARM_START == style) { _sensor_cal.load(); } else { // do cold-start calibration for both accel and gyro _init_gyro(delay_cb); // save calibration _sensor_cal.save(); } } /**************************************************/ void AP_IMU_INS::init_gyro(void (*delay_cb)(unsigned long t)) { _init_gyro(delay_cb); _sensor_cal.save(); } void AP_IMU_INS::_init_gyro(void (*delay_cb)(unsigned long t)) { int flashcount = 0; float adc_in; float prev[3] = {0,0,0}; float total_change; float max_offset; float ins_gyro[6]; // cold start delay_cb(500); Serial.printf_P(PSTR("Init Gyro")); for(int c = 0; c < 25; c++){ // Mostly we are just flashing the LED's here // to tell the user to keep the IMU still digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); delay_cb(20); _ins->update(); _ins->get_gyros(ins_gyro); digitalWrite(A_LED_PIN, HIGH); digitalWrite(C_LED_PIN, LOW); delay_cb(20); } for (int j = 0; j <= 2; j++) _sensor_cal[j] = 500; // Just a large value to load prev[j] the first time do { _ins->update(); _ins->get_gyros(ins_gyro); for (int j = 0; j <= 2; j++){ prev[j] = _sensor_cal[j]; adc_in = ins_gyro[j]; _sensor_cal[j] = adc_in; } for(int i = 0; i < 50; i++){ _ins->update(); _ins->get_gyros(ins_gyro); for (int j = 0; j < 3; j++){ adc_in = ins_gyro[j]; // filter _sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1; } delay_cb(20); if(flashcount == 5) { Serial.printf_P(PSTR("*")); digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); } flashcount++; } total_change = fabs(prev[0] - _sensor_cal[0]) + fabs(prev[1] - _sensor_cal[1]) +fabs(prev[2] - _sensor_cal[2]); max_offset = (_sensor_cal[0] > _sensor_cal[1]) ? _sensor_cal[0] : _sensor_cal[1]; max_offset = (max_offset > _sensor_cal[2]) ? max_offset : _sensor_cal[2]; delay_cb(500); } while ( total_change > _gyro_total_cal_change || max_offset > _gyro_max_cal_offset); } void AP_IMU_INS::save() { _sensor_cal.save(); } void AP_IMU_INS::init_accel(void (*delay_cb)(unsigned long t)) { _init_accel(delay_cb); _sensor_cal.save(); } void AP_IMU_INS::_init_accel(void (*delay_cb)(unsigned long t)) { int flashcount = 0; float adc_in; float prev[6] = {0,0,0}; float total_change; float max_offset; float ins_accel[3]; // cold start delay_cb(500); Serial.printf_P(PSTR("Init Accel")); for (int j=3; j<=5; j++) _sensor_cal[j] = 500; // Just a large value to load prev[j] the first time do { _ins->update(); _ins->get_accels(ins_accel); for (int j = 3; j <= 5; j++){ prev[j] = _sensor_cal[j]; adc_in = ins_accel[j-3]; _sensor_cal[j] = adc_in; } for(int i = 0; i < 50; i++){ // We take some readings... delay_cb(20); _ins->update(); _ins->get_accels(ins_accel); for (int j = 3; j < 6; j++){ adc_in = ins_accel[j-3]; _sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1; } if(flashcount == 5) { Serial.printf_P(PSTR("*")); digitalWrite(A_LED_PIN, LOW); digitalWrite(C_LED_PIN, HIGH); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); } flashcount++; } // null gravity from the Z accel _sensor_cal[5] += 9.805; total_change = fabs(prev[3] - _sensor_cal[3]) + fabs(prev[4] - _sensor_cal[4]) +fabs(prev[5] - _sensor_cal[5]); max_offset = (_sensor_cal[3] > _sensor_cal[4]) ? _sensor_cal[3] : _sensor_cal[4]; max_offset = (max_offset > _sensor_cal[5]) ? max_offset : _sensor_cal[5]; delay_cb(500); } while ( total_change > _accel_total_cal_change || max_offset > _accel_max_cal_offset); Serial.printf_P(PSTR(" ")); } float AP_IMU_INS::_calibrated(uint8_t channel, float ins_value) { return ins_value - _sensor_cal[channel]; } bool AP_IMU_INS::update(void) { float gyros[3]; float accels[3]; _ins->update(); _ins->get_gyros(gyros); _ins->get_accels(accels); _sample_time = _ins->sample_time(); // convert corrected gyro readings to delta acceleration // _gyro.x = _calibrated(0, gyros[0]); _gyro.y = _calibrated(1, gyros[1]); _gyro.z = _calibrated(2, gyros[2]); // convert corrected accelerometer readings to acceleration // _accel.x = _calibrated(3, accels[0]); _accel.y = _calibrated(4, accels[1]); _accel.z = _calibrated(5, accels[2]); _accel_filtered.x = _accel_filtered.x / 2 + _accel.x / 2; _accel_filtered.y = _accel_filtered.y / 2 + _accel.y / 2; _accel_filtered.z = _accel_filtered.z / 2 + _accel.z / 2; // always updated return true; }