// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include #include #include #include const AP_Param::GroupInfo AP_Mount::var_info[] PROGMEM = { // index 0 was used for the old orientation matrix // @Param: MODE // @DisplayName: Mount operation mode // @Description: Camera or antenna mount operation mode // @Values: 0:retract,1:neutral,2:MavLink_targeting,3:RC_targeting,4:GPS_point // @User: Standard AP_GROUPINFO("MODE", 0, AP_Mount, _mount_mode), // see MAV_MOUNT_MODE at ardupilotmega.h // @Param: RETRACT // @DisplayName: Mount retract angles // @Description: Mount angles when in retract operation mode // @Units: Degrees // @Range: -180 180 // @Increment: .01 // @User: Standard AP_GROUPINFO("RETRACT", 1, AP_Mount, _retract_angles), // @Param: NEUTRAL // @DisplayName: Mount neutral angles // @Description: Mount angles when in neutral operation mode // @Units: Degrees // @Range: -180 180 // @Increment: .01 // @User: Standard AP_GROUPINFO("NEUTRAL", 2, AP_Mount, _neutral_angles), // @Param: CONTROL // @DisplayName: Mount control angles // @Description: Mount angles when in MavLink or RC control operation mode // @Units: Degrees // @Range: -180 180 // @Increment: .01 // @User: Standard AP_GROUPINFO("CONTROL", 3, AP_Mount, _control_angles), // @Param: STAB_ROLL // @DisplayName: Stabilize mount roll // @Description:enable roll stabilisation relative to Earth // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("STAB_ROLL", 4, AP_Mount, _stab_roll), // @Param: STAB_PITCH // @DisplayName: Stabilize mount pitch // @Description: enable pitch/tilt stabilisation relative to Earth // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("STAB_PITCH", 5, AP_Mount, _stab_pitch), // @Param: STAB_YAW // @DisplayName: Stabilize mount yaw // @Description: enable yaw/pan stabilisation relative to Earth // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("STAB_YAW", 6, AP_Mount, _stab_yaw), AP_GROUPEND }; extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function AP_Mount::AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs): _gps(gps) { _ahrs = ahrs; _current_loc = current_loc; // startup with the mount retracted set_mode(MAV_MOUNT_MODE_RETRACT); // default to zero angles _retract_angles = Vector3f(0,0,0); _neutral_angles = Vector3f(0,0,0); _control_angles = Vector3f(0,0,0); } //sets the servo angles for retraction, note angles are in degrees void AP_Mount::set_retract_angles(float roll, float pitch, float yaw) { _retract_angles = Vector3f(roll, pitch, yaw); } //sets the servo angles for neutral, note angles are in degrees void AP_Mount::set_neutral_angles(float roll, float pitch, float yaw) { _neutral_angles = Vector3f(roll, pitch, yaw); } //sets the servo angles for MAVLink, note angles are in degrees void AP_Mount::set_control_angles(float roll, float pitch, float yaw) { _control_angles = Vector3f(roll, pitch, yaw); } // used to tell the mount to track GPS location void AP_Mount::set_GPS_target_location(Location targetGPSLocation) { _target_GPS_location=targetGPSLocation; } // This one should be called periodically void AP_Mount::update_mount_position() { switch((enum MAV_MOUNT_MODE)_mount_mode.get()) { // move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage case MAV_MOUNT_MODE_RETRACT: { Vector3f vec = _retract_angles.get(); _roll_angle = vec.x; _pitch_angle = vec.y; _yaw_angle = vec.z; break; } // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: { Vector3f vec = _neutral_angles.get(); _roll_angle = vec.x; _pitch_angle = vec.y; _yaw_angle = vec.z; break; } // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: { Vector3f vec = _control_angles.get(); _roll_control_angle = radians(vec.x); _pitch_control_angle = radians(vec.y); _yaw_control_angle = radians(vec.z); stabilize(); break; } // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: { // rc_input() takes degrees * 100 units G_RC_AUX(k_mount_roll)->rc_input(&_roll_control_angle, _roll_angle*100); G_RC_AUX(k_mount_pitch)->rc_input(&_pitch_control_angle, _pitch_angle*100); G_RC_AUX(k_mount_yaw)->rc_input(&_yaw_control_angle, _yaw_angle*100); if (_ahrs){ stabilize(); } else { if (g_rc_function[RC_Channel_aux::k_mount_roll]) _roll_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_roll]); if (g_rc_function[RC_Channel_aux::k_mount_pitch]) _pitch_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_pitch]); if (g_rc_function[RC_Channel_aux::k_mount_yaw]) _yaw_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_yaw]); } break; } // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: { if(_gps->fix){ calc_GPS_target_angle(&_target_GPS_location); stabilize(); } break; } default: //do nothing break; } // write the results to the servos // closest_limit() takes degrees * 10 units G_RC_AUX(k_mount_roll)->closest_limit(_roll_angle*10); G_RC_AUX(k_mount_pitch)->closest_limit(_pitch_angle*10); G_RC_AUX(k_mount_yaw)->closest_limit(_yaw_angle*10); } void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode) { _mount_mode = (int8_t)mode; } // Change the configuration of the mount // triggered by a MavLink packet. void AP_Mount::configure_msg(mavlink_message_t* msg) { __mavlink_mount_configure_t packet; mavlink_msg_mount_configure_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } set_mode((enum MAV_MOUNT_MODE)packet.mount_mode); _stab_pitch = packet.stab_pitch; _stab_roll = packet.stab_roll; _stab_yaw = packet.stab_yaw; } // Control the mount (depends on the previously set mount configuration) // triggered by a MavLink packet. void AP_Mount::control_msg(mavlink_message_t *msg) { __mavlink_mount_control_t packet; mavlink_msg_mount_control_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } switch ((enum MAV_MOUNT_MODE)_mount_mode.get()) { case MAV_MOUNT_MODE_RETRACT: // Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization set_retract_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01); if (packet.save_position) { _retract_angles.save(); } break; case MAV_MOUNT_MODE_NEUTRAL: // Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM set_neutral_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01); if (packet.save_position) { _neutral_angles.save(); } break; case MAV_MOUNT_MODE_MAVLINK_TARGETING: // Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization set_control_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01); break; case MAV_MOUNT_MODE_RC_TARGETING: // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization { Vector3f vec = _neutral_angles.get(); _roll_angle = vec.x; _pitch_angle = vec.y; _yaw_angle = vec.z; } break; case MAV_MOUNT_MODE_GPS_POINT: // Load neutral position and start to point to Lat,Lon,Alt Location targetGPSLocation; targetGPSLocation.lat = packet.input_a; targetGPSLocation.lng = packet.input_b; targetGPSLocation.alt = packet.input_c; set_GPS_target_location(targetGPSLocation); break; case MAV_MOUNT_MODE_ENUM_END: break; } } // Return mount status information (depends on the previously set mount configuration) // triggered by a MavLink packet. void AP_Mount::status_msg(mavlink_message_t *msg) { __mavlink_mount_status_t packet; mavlink_msg_mount_status_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } switch ((enum MAV_MOUNT_MODE)_mount_mode.get()) { case MAV_MOUNT_MODE_RETRACT: // safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization packet.pointing_b = _roll_angle*100; ///< degrees*100 packet.pointing_a = _pitch_angle*100; ///< degrees*100 packet.pointing_c = _yaw_angle*100; ///< degrees*100 break; case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt packet.pointing_a = _target_GPS_location.lat; ///< latitude packet.pointing_b = _target_GPS_location.lng; ///< longitude packet.pointing_c = _target_GPS_location.alt; ///< altitude break; case MAV_MOUNT_MODE_ENUM_END: break; } // status reply // TODO: is COMM_3 correct ? mavlink_msg_mount_status_send(MAVLINK_COMM_3, packet.target_system, packet.target_component, packet.pointing_a, packet.pointing_b, packet.pointing_c); } // Set mount point/region of interest, triggered by mission script commands void AP_Mount::set_roi_cmd() { // TODO get the information out of the mission command and use it } // Set mount configuration, triggered by mission script commands void AP_Mount::configure_cmd() { // TODO get the information out of the mission command and use it } // Control the mount (depends on the previously set mount configuration), triggered by mission script commands void AP_Mount::control_cmd() { // TODO get the information out of the mission command and use it } void AP_Mount::calc_GPS_target_angle(struct Location *target) { float GPS_vector_x = (target->lng-_current_loc->lng)*cos(ToRad((_current_loc->lat+target->lat)/(t7*2.0)))*.01113195; float GPS_vector_y = (target->lat-_current_loc->lat)*.01113195; float GPS_vector_z = (target->alt-_current_loc->alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter). float target_distance = 100.0*sqrt(GPS_vector_x*GPS_vector_x + GPS_vector_y*GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters. _roll_control_angle = 0; _pitch_control_angle = atan2(GPS_vector_z, target_distance); _yaw_control_angle = atan2(GPS_vector_x, GPS_vector_y); // Converts +/- 180 into 0-360. if(_yaw_control_angle<0){ _yaw_control_angle += 2*M_PI; } } /// Stabilizes mount relative to the Earth's frame /// Inputs: /// _roll_control_angle desired roll angle in radians, /// _pitch_control_angle desired pitch/tilt angle in radians, /// _yaw_control_angle desired yaw/pan angle in radians /// Outputs: /// _roll_angle stabilized roll angle in degrees, /// _pitch_angle stabilized pitch/tilt angle in degrees, /// _yaw_angle stabilized yaw/pan angle in degrees void AP_Mount::stabilize() { if (_ahrs) { // only do the full 3D frame transform if we are doing yaw control if (_stab_yaw) { Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input. Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos. m = _ahrs->get_dcm_matrix(); m.transpose(); cam.from_euler(_roll_control_angle, _pitch_control_angle, _yaw_control_angle); gimbal_target = m * cam; gimbal_target.to_euler(&_roll_angle, &_pitch_angle, &_yaw_angle); _roll_angle = degrees(_roll_angle); _pitch_angle = degrees(_pitch_angle); _yaw_angle = degrees(_yaw_angle); } else { // otherwise base mount roll and pitch on the ahrs // roll/pitch attitude, plus any requested angle _roll_angle = degrees(_roll_control_angle); _pitch_angle = degrees(_pitch_control_angle); _yaw_angle = degrees(_yaw_control_angle); if (_stab_roll) { _roll_angle -= degrees(_ahrs->roll); } if (_stab_pitch) { _pitch_angle -= degrees(_ahrs->pitch); } } } } // This function is needed to let the HIL code compile long AP_Mount::rc_map(RC_Channel_aux* rc_ch) { return (rc_ch->radio_in - rc_ch->radio_min) * (rc_ch->angle_max - rc_ch->angle_min) / (rc_ch->radio_max - rc_ch->radio_min) + rc_ch->angle_min; } // For testing and development. Called in the medium loop. void AP_Mount::debug_output() { Serial3.print("current - "); Serial3.print("lat "); Serial3.print(_current_loc->lat); Serial3.print(",lon "); Serial3.print(_current_loc->lng); Serial3.print(",alt "); Serial3.println(_current_loc->alt); Serial3.print("gps - "); Serial3.print("lat "); Serial3.print(_gps->latitude); Serial3.print(",lon "); Serial3.print(_gps->longitude); Serial3.print(",alt "); Serial3.print(_gps->altitude); Serial3.println(); Serial3.print("target - "); Serial3.print("lat "); Serial3.print(_target_GPS_location.lat); Serial3.print(",lon "); Serial3.print(_target_GPS_location.lng); Serial3.print(",alt "); Serial3.print(_target_GPS_location.alt); Serial3.print(" hdg to targ "); Serial3.print(degrees(_yaw_control_angle)); Serial3.println(); }