/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
/*
This is the main Blimp class
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
// Common dependencies
#include
#include
#include
#include
// Application dependencies
#include
#include // ArduPilot Mega Flash Memory Library
#include // ArduPilot Mega Vector/Matrix math Library
// #include // interface and maths for accelerometer calibration
// #include // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include
#include // statistics library
#include // Filter library
#include // needed for AHRS build
#include // needed for AHRS build
#include // ArduPilot Mega inertial navigation library
#include // RC input mapping library
#include // Battery monitor library
#include
#include
#include
#include
#include
#include
// Configuration
#include "defines.h"
#include "config.h"
#include "Fins.h"
#include "RC_Channel.h" // RC Channel Library
#include "GCS_Mavlink.h"
#include "GCS_Blimp.h"
#include "AP_Arming.h"
#include
// Local modules
#include "Parameters.h"
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include
#endif
#include "mode.h"
class Blimp : public AP_Vehicle
{
public:
friend class GCS_MAVLINK_Blimp;
friend class GCS_Blimp;
friend class Parameters;
friend class ParametersG2;
friend class AP_Arming_Blimp;
friend class RC_Channel_Blimp;
friend class RC_Channels_Blimp;
friend class Mode;
friend class ModeManual;
friend class ModeLand;
friend class ModeVelocity;
friend class ModeLoiter;
friend class Fins;
Blimp(void);
private:
// key aircraft parameters passed to multiple libraries
AP_Vehicle::MultiCopter aparm;
// Global parameters are all contained within the 'g' class.
Parameters g;
ParametersG2 g2;
// primary input control channels
RC_Channel *channel_right;
RC_Channel *channel_front;
RC_Channel *channel_down;
RC_Channel *channel_yaw;
AP_Logger logger;
// flight modes convenience array
AP_Int8 *flight_modes;
const uint8_t num_flight_modes = 6;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SIM sitl;
#endif
// Arming/Disarming management class
AP_Arming_Blimp arming;
// system time in milliseconds of last recorded yaw reset from ekf
uint32_t ekfYawReset_ms;
int8_t ekf_primary_core;
// vibration check
struct {
bool high_vibes; // true while high vibration are detected
uint32_t start_ms; // system time high vibration were last detected
uint32_t clear_ms; // system time high vibrations stopped
} vibration_check;
// GCS selection
GCS_Blimp _gcs; // avoid using this; use gcs()
GCS_Blimp &gcs()
{
return _gcs;
}
// Documentation of Globals:
typedef union {
struct {
uint8_t pre_arm_rc_check : 1; // 1 // true if rc input pre-arm checks have been completed successfully
uint8_t pre_arm_check : 1; // 2 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t auto_armed : 1; // 3 // stops auto missions from beginning until throttle is raised
uint8_t logging_started : 1; // 4 // true if logging has started
uint8_t land_complete : 1; // 5 // true if we have detected a landing
uint8_t new_radio_frame : 1; // 6 // Set true if we have new PWM data to act on from the Radio
uint8_t rc_receiver_present : 1; // 7 // true if we have an rc receiver present (i.e. if we've ever received an update
uint8_t compass_mot : 1; // 8 // true if we are currently performing compassmot calibration
uint8_t motor_test : 1; // 9 // true if we are currently performing the motors test
uint8_t initialised : 1; // 10 // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
uint8_t land_complete_maybe : 1; // 11 // true if we may have landed (less strict version of land_complete)
uint8_t throttle_zero : 1; // 12 // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down
uint8_t gps_glitching : 1; // 13 // true if GPS glitching is affecting navigation accuracy
uint8_t in_arming_delay : 1; // 14 // true while we are armed but waiting to spin motors
uint8_t initialised_params : 1; // 15 // true when the all parameters have been initialised. we cannot send parameters to the GCS until this is done
};
uint32_t value;
} ap_t;
ap_t ap;
static_assert(sizeof(uint32_t) == sizeof(ap), "ap_t must be uint32_t");
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
Mode::Number control_mode;
ModeReason control_mode_reason = ModeReason::UNKNOWN;
Mode::Number prev_control_mode;
RCMapper rcmap;
// intertial nav alt when we armed
float arming_altitude_m;
// Failsafe
struct {
int8_t radio_counter; // number of iterations with throttle below throttle_fs_value
uint8_t radio : 1; // A status flag for the radio failsafe
uint8_t gcs : 1; // A status flag for the ground station failsafe
uint8_t ekf : 1; // true if ekf failsafe has occurred
} failsafe;
bool any_failsafe_triggered() const
{
return failsafe.radio || battery.has_failsafed() || failsafe.gcs || failsafe.ekf;
}
// sensor health for logging
struct {
uint8_t baro : 1; // true if baro is healthy
uint8_t compass : 1; // true if compass is healthy
} sensor_health;
// Motor Output
Fins *motors;
int32_t _home_bearing;
uint32_t _home_distance;
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
int32_t initial_armed_bearing;
// Battery Sensors
AP_BattMonitor battery{MASK_LOG_CURRENT,
FUNCTOR_BIND_MEMBER(&Blimp::handle_battery_failsafe, void, const char*, const int8_t),
_failsafe_priorities};
// Altitude
int32_t baro_alt; // barometer altitude in cm above home
LowPassFilterVector3f land_accel_ef_filter; // accelerations for land and crash detector tests
// filtered pilot's throttle input used to cancel landing if throttle held high
LowPassFilterFloat rc_throttle_control_in_filter;
// 3D Location vectors
// Current location of the vehicle (altitude is relative to home)
Location current_loc;
Vector3f vel_ned;
Vector3f vel_ned_filtd;
Vector3f pos_ned;
float vel_yaw;
float vel_yaw_filtd;
NotchFilterVector2f vel_xy_filter;
NotchFilterFloat vel_z_filter;
NotchFilterFloat vel_yaw_filter;
// Inertial Navigation
AP_InertialNav_NavEKF inertial_nav;
// Vel & pos PIDs
AC_PID_2D pid_vel_xy{3, 0.2, 0, 0, 0.2, 3, 3, 0.02}; //These are the defaults - P I D FF IMAX FiltHz FiltDHz DT
AC_PID_Basic pid_vel_z{7, 1.5, 0, 0, 1, 3, 3, 0.02};
AC_PID_Basic pid_vel_yaw{3, 0.4, 0, 0, 0.2, 3, 3, 0.02};
AC_PID_2D pid_pos_xy{1, 0.05, 0, 0, 0.1, 3, 3, 0.02};
AC_PID_Basic pid_pos_z{0.7, 0, 0, 0, 0, 3, 3, 0.02};
AC_PID pid_pos_yaw{1.2, 0.5, 0, 0, 2, 3, 3, 3, 0.02}; //p, i, d, ff, imax, filt_t, filt_e, filt_d, dt, opt srmax, opt srtau
// System Timers
// --------------
// arm_time_ms - Records when vehicle was armed. Will be Zero if we are disarmed.
uint32_t arm_time_ms;
// Used to exit the roll and pitch auto trim function
uint8_t auto_trim_counter;
bool auto_trim_started = false;
// last valid RC input time
uint32_t last_radio_update_ms;
// Top-level logic
// setup the var_info table
AP_Param param_loader;
bool standby_active;
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const struct LogStructure log_structure[];
enum Failsafe_Action {
Failsafe_Action_None = 0,
Failsafe_Action_Land = 1,
Failsafe_Action_Terminate = 5
};
enum class FailsafeOption {
RC_CONTINUE_IF_AUTO = (1<<0), // 1
GCS_CONTINUE_IF_AUTO = (1<<1), // 2
RC_CONTINUE_IF_GUIDED = (1<<2), // 4
CONTINUE_IF_LANDING = (1<<3), // 8
GCS_CONTINUE_IF_PILOT_CONTROL = (1<<4), // 16
RELEASE_GRIPPER = (1<<5), // 32
};
static constexpr int8_t _failsafe_priorities[] = {
Failsafe_Action_Terminate,
Failsafe_Action_Land,
Failsafe_Action_None,
-1 // the priority list must end with a sentinel of -1
};
#define FAILSAFE_LAND_PRIORITY 1
static_assert(_failsafe_priorities[FAILSAFE_LAND_PRIORITY] == Failsafe_Action_Land,
"FAILSAFE_LAND_PRIORITY must match the entry in _failsafe_priorities");
static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1,
"_failsafe_priorities is missing the sentinel");
// AP_State.cpp
void set_auto_armed(bool b);
void set_failsafe_radio(bool b);
void set_failsafe_gcs(bool b);
// Blimp.cpp
void get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit) override;
void fast_loop() override;
void rc_loop();
void throttle_loop();
void update_batt_compass(void);
void full_rate_logging();
void ten_hz_logging_loop();
void twentyfive_hz_logging();
void three_hz_loop();
void one_hz_loop();
void read_AHRS(void);
void update_altitude();
void rotate_NE_to_BF(Vector2f &vec);
void rotate_BF_to_NE(Vector2f &vec);
// commands.cpp
void update_home_from_EKF();
void set_home_to_current_location_inflight();
bool set_home_to_current_location(bool lock) WARN_IF_UNUSED;
bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED;
bool far_from_EKF_origin(const Location& loc);
// ekf_check.cpp
void ekf_check();
bool ekf_over_threshold();
void failsafe_ekf_event();
void failsafe_ekf_off_event(void);
void check_ekf_reset();
void check_vibration();
// events.cpp
bool failsafe_option(FailsafeOption opt) const;
void failsafe_radio_on_event();
void failsafe_radio_off_event();
void handle_battery_failsafe(const char* type_str, const int8_t action);
void failsafe_gcs_check();
bool should_disarm_on_failsafe();
void do_failsafe_action(Failsafe_Action action, ModeReason reason);
void gpsglitch_check();
// failsafe.cpp
void failsafe_enable();
void failsafe_disable();
// fence.cpp
void fence_check();
// inertia.cpp
void read_inertia();
// landing_detector.cpp
void update_land_and_crash_detectors();
void update_land_detector();
// landing_gear.cpp
void landinggear_update();
// Log.cpp
void Log_Write_Performance();
void Log_Write_Attitude();
void Log_Write_PIDs();
void Log_Write_EKF_POS();
void Log_Write_MotBatt();
void Log_Write_Data(LogDataID id, int32_t value);
void Log_Write_Data(LogDataID id, uint32_t value);
void Log_Write_Data(LogDataID id, int16_t value);
void Log_Write_Data(LogDataID id, uint16_t value);
void Log_Write_Data(LogDataID id, float value);
void Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, float tune_min, float tune_max);
void Log_Sensor_Health();
void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
void Log_Write_SysID_Setup(uint8_t systemID_axis, float waveform_magnitude, float frequency_start, float frequency_stop, float time_fade_in, float time_const_freq, float time_record, float time_fade_out);
void Log_Write_SysID_Data(float waveform_time, float waveform_sample, float waveform_freq, float angle_x, float angle_y, float angle_z, float accel_x, float accel_y, float accel_z);
void Log_Write_Vehicle_Startup_Messages();
void log_init(void);
void Write_FINI(float right, float front, float down, float yaw);
void Write_FINO(float *amp, float *off);
// mode.cpp
bool set_mode(Mode::Number mode, ModeReason reason);
bool set_mode(const uint8_t new_mode, const ModeReason reason) override;
uint8_t get_mode() const override
{
return (uint8_t)control_mode;
}
void update_flight_mode();
void notify_flight_mode();
// mode_land.cpp
void set_mode_land_with_pause(ModeReason reason);
bool landing_with_GPS();
// // motors.cpp
void arm_motors_check();
void motors_output();
// Parameters.cpp
void load_parameters(void) override;
void convert_pid_parameters(void);
void convert_lgr_parameters(void);
void convert_fs_options_params(void);
// radio.cpp
void default_dead_zones();
void init_rc_in();
void init_rc_out();
void enable_motor_output();
void read_radio();
void set_throttle_and_failsafe(uint16_t throttle_pwm);
void set_throttle_zero_flag(int16_t throttle_control);
// sensors.cpp
void read_barometer(void);
void init_rangefinder(void);
void read_rangefinder(void);
bool rangefinder_alt_ok();
bool rangefinder_up_ok();
void rpm_update();
void update_optical_flow(void);
void init_proximity();
void update_proximity();
// RC_Channel.cpp
void save_trim();
void auto_trim();
void auto_trim_cancel();
// system.cpp
void init_ardupilot() override;
void startup_INS_ground();
bool position_ok() const;
bool ekf_has_absolute_position() const;
bool ekf_has_relative_position() const;
bool ekf_alt_ok() const;
void update_auto_armed();
bool should_log(uint32_t mask);
MAV_TYPE get_frame_mav_type();
const char* get_frame_string();
void allocate_motors(void);
Mode *flightmode;
ModeManual mode_manual;
ModeLand mode_land;
ModeVelocity mode_velocity;
ModeLoiter mode_loiter;
// mode.cpp
Mode *mode_from_mode_num(const Mode::Number mode);
void exit_mode(Mode *&old_flightmode, Mode *&new_flightmode);
public:
void failsafe_check(); // failsafe.cpp
};
extern Blimp blimp;
using AP_HAL::millis;
using AP_HAL::micros;