/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "AP_InertialSensor_HIL.h" #include const extern AP_HAL::HAL& hal; AP_InertialSensor_HIL::AP_InertialSensor_HIL() : AP_InertialSensor(), _sample_period_usec(0), _last_sample_usec(0) { _accel[0] = Vector3f(0, 0, -GRAVITY_MSS); } uint16_t AP_InertialSensor_HIL::_init_sensor( Sample_rate sample_rate ) { switch (sample_rate) { case RATE_50HZ: _sample_period_usec = 20000; break; case RATE_100HZ: _sample_period_usec = 10000; break; case RATE_200HZ: _sample_period_usec = 5000; break; case RATE_400HZ: _sample_period_usec = 2500; break; } return AP_PRODUCT_ID_NONE; } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_HIL::update( void ) { uint32_t now = hal.scheduler->micros(); _last_sample_usec = now; return true; } float AP_InertialSensor_HIL::get_delta_time() const { return _sample_period_usec * 1.0e-6f; } float AP_InertialSensor_HIL::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } bool AP_InertialSensor_HIL::_sample_available() { uint32_t tnow = hal.scheduler->micros(); bool have_sample = false; while (tnow - _last_sample_usec > _sample_period_usec) { have_sample = true; _last_sample_usec += _sample_period_usec; } return have_sample; } bool AP_InertialSensor_HIL::wait_for_sample(uint16_t timeout_ms) { if (_sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { uint32_t tnow = hal.scheduler->micros(); uint32_t tdelay = (_last_sample_usec + _sample_period_usec) - tnow; if (tdelay < 100000) { hal.scheduler->delay_microseconds(tdelay); } if (_sample_available()) { return true; } } return false; } void AP_InertialSensor_HIL::set_accel(uint8_t instance, const Vector3f &accel) { if (instance >= INS_MAX_INSTANCES) { return; } _previous_accel[instance] = _accel[instance]; _accel[instance] = accel; _last_accel_usec[instance] = hal.scheduler->micros(); } void AP_InertialSensor_HIL::set_gyro(uint8_t instance, const Vector3f &gyro) { if (instance >= INS_MAX_INSTANCES) { return; } _gyro[instance] = gyro; _last_gyro_usec[instance] = hal.scheduler->micros(); } bool AP_InertialSensor_HIL::get_gyro_health(uint8_t instance) const { if (instance >= INS_MAX_INSTANCES) { return false; } return (hal.scheduler->micros() - _last_gyro_usec[instance]) < 40000; } bool AP_InertialSensor_HIL::get_accel_health(uint8_t instance) const { if (instance >= INS_MAX_INSTANCES) { return false; } return (hal.scheduler->micros() - _last_accel_usec[instance]) < 40000; } uint8_t AP_InertialSensor_HIL::get_gyro_count(void) const { if (get_gyro_health(1)) { return 2; } return 1; } uint8_t AP_InertialSensor_HIL::get_accel_count(void) const { if (get_accel_health(1)) { return 2; } return 1; }