/* AP_MotorsHeli.cpp - ArduCopter motors library Code by RandyMackay. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ #include "AP_MotorsHeli.h" const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = { AP_NESTEDGROUPINFO(AP_Motors, 0), // @Param: SV1_POS // @DisplayName: Servo 1 Position // @Description: This is the angular location of swash servo #1. // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, servo1_pos), // @Param: SV2_POS // @DisplayName: Servo 2 Position // @Description: This is the angular location of swash servo #2. // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, servo2_pos), // @Param: SV3_POS // @DisplayName: Servo 3 Position // @Description: This is the angular location of swash servo #3. // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, servo3_pos), // @Param: ROL_MAX // @DisplayName: Maximum Roll Angle // @Description: This is the maximum allowable aircraft roll angle in Stabilize Mode. // @Range: 0 18000 // @Units: Degrees // @Increment: 1 // @User: Advanced AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, roll_max), // @Param: PIT_MAX // @DisplayName: Maximum Pitch Angle // @Description: This is the maximum allowable aircraft pitch angle in Stabilize Mode. // @Range: 0 18000 // @Units: Degrees // @Increment: 1 // @User: Advanced AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, pitch_max), // @Param: COL_MIN // @DisplayName: Collective Pitch Minimum // @Description: This controls the lowest possible servo position for the swashplate. // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, collective_min), // @Param: COL_MAX // @DisplayName: Collective Pitch Maximum // @Description: This controls the highest possible servo position for the swashplate. // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, collective_max), // @Param: COL_MID // @DisplayName: Collective Pitch Mid-Point // @Description: This is the swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades). // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, collective_mid), // @Param: GYR_ENABLE // @DisplayName: External Gyro Enabled // @Description: Setting this to true (1) will enable an external rudder gyro control. Setting this to false(0) will disable the external gyro control and will revert to internal rudder control. // @User: Standard AP_GROUPINFO("GYR_ENABLE", 9, AP_MotorsHeli, ext_gyro_enabled), // @Param: SWASH_TYPE // @DisplayName: Swash Plate Type // @Description: Setting this to 0 will configure for a 3-servo CCPM. Setting this to 1 will configure for mechanically mixed "H1". // @User: Standard AP_GROUPINFO("SWASH_TYPE", 10, AP_MotorsHeli, swash_type), // changed from trunk // @Param: GYR_GAIM // @DisplayName: External Gyro Gain // @Description: This is the PWM which is passed to the external gyro when external gyro is enabled. // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, ext_gyro_gain), // @Param: SV_MAN // @DisplayName: Manual Servo Mode // @Description: Setting this to true (1) will pass radio inputs directly to servos. Setting this to false(0) will enable Arducopter control of servos. // @User: Standard AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, servo_manual), // @Param: PHANG // @DisplayName: Swashplate Phase Angle Compensation // @Description: This corrects for phase angle errors of the helicopter main rotor head. // @Range: -90 90 // @Units: Degrees // @User: Advanced // @Increment: 1 AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, phase_angle), // changed from trunk // @Param: COLYAW // @DisplayName: Collective-Yaw Mixing // @Description: This is a feed-forward compensation to automatically add rudder input when collective pitch is increased. // @Range: 0 5 AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, collective_yaw_effect), // changed from trunk AP_GROUPEND }; // init void AP_MotorsHeli::Init() { // set update rate set_update_rate(_speed_hz); } // set update rate to motors - a value in hertz or AP_MOTORS_SPEED_INSTANT_PWM for instant pwm void AP_MotorsHeli::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // setup fast channels if( _speed_hz != AP_MOTORS_SPEED_INSTANT_PWM ) { _rc->SetFastOutputChannels(_BV(_motor_to_channel_map[AP_MOTORS_MOT_1]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_2]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_3]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_4]), _speed_hz); } } // enable - starts allowing signals to be sent to motors void AP_MotorsHeli::enable() { // enable output channels _rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_1]); // swash servo 1 _rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_2]); // swash servo 2 _rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_3]); // swash servo 3 _rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_4]); // yaw _rc->enable_out(AP_MOTORS_HELI_EXT_GYRO); // for external gyro } // output_min - sends minimum values out to the motors void AP_MotorsHeli::output_min() { // move swash to mid move_swash(0,0,500,0); } // output_armed - sends commands to the motors void AP_MotorsHeli::output_armed() { // if manual override (i.e. when setting up swash), pass pilot commands straight through to swash if( servo_manual == 1 ) { _rc_roll->servo_out = _rc_roll->control_in; _rc_pitch->servo_out = _rc_pitch->control_in; _rc_throttle->servo_out = _rc_throttle->control_in; _rc_yaw->servo_out = _rc_yaw->control_in; } //static int counter = 0; _rc_roll->calc_pwm(); _rc_pitch->calc_pwm(); _rc_throttle->calc_pwm(); _rc_yaw->calc_pwm(); move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out ); } // output_disarmed - sends commands to the motors void AP_MotorsHeli::output_disarmed() { if(_rc_throttle->control_in > 0){ // we have pushed up the throttle // remove safety _auto_armed = true; } // for helis - armed or disarmed we allow servos to move output_armed(); } // output_disarmed - sends commands to the motors void AP_MotorsHeli::output_test() { int16_t i; // Send minimum values to all motors output_min(); // servo 1 for( i=0; i<5; i++ ) { _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim - 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 0); delay(300); } // servo 2 for( i=0; i<5; i++ ) { _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim - 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 0); delay(300); } // servo 3 for( i=0; i<5; i++ ) { _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim - 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 0); delay(300); } // external gyro if( ext_gyro_enabled ) { _rc->OutputCh(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain); } // servo 4 for( i=0; i<5; i++ ) { _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim - 100); delay(300); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 0); delay(300); } // Send minimum values to all motors output_min(); } // reset_swash - free up swash for maximum movements. Used for set-up void AP_MotorsHeli::reset_swash() { // free up servo ranges _servo_1->radio_min = 1000; _servo_1->radio_max = 2000; _servo_2->radio_min = 1000; _servo_2->radio_max = 2000; _servo_3->radio_min = 1000; _servo_3->radio_max = 2000; if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform servo control mixing // roll factors _rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle)); _rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle)); _rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle)); // pitch factors _pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle)); _pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle)); _pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle)); // collective factors _collectiveFactor[CH_1] = 1; _collectiveFactor[CH_2] = 1; _collectiveFactor[CH_3] = 1; }else{ //H1 Swashplate, keep servo outputs seperated // roll factors _rollFactor[CH_1] = 1; _rollFactor[CH_2] = 0; _rollFactor[CH_3] = 0; // pitch factors _pitchFactor[CH_1] = 0; _pitchFactor[CH_2] = 1; _pitchFactor[CH_3] = 0; // collective factors _collectiveFactor[CH_1] = 0; _collectiveFactor[CH_2] = 0; _collectiveFactor[CH_3] = 1; } // set roll, pitch and throttle scaling _roll_scaler = 1.0; _pitch_scaler = 1.0; _collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0; // we must be in set-up mode so mark swash as uninitialised _swash_initialised = false; } // init_swash - initialise the swash plate void AP_MotorsHeli::init_swash() { // swash servo initialisation _servo_1->set_range(0,1000); _servo_2->set_range(0,1000); _servo_3->set_range(0,1000); _servo_4->set_angle(4500); // ensure _coll values are reasonable if( collective_min >= collective_max ) { collective_min = 1000; collective_max = 2000; } collective_mid = constrain(collective_mid, collective_min, collective_max); // calculate throttle mid point throttle_mid = ((float)(collective_mid-collective_min))/((float)(collective_max-collective_min))*1000.0; // determine roll, pitch and throttle scaling _roll_scaler = (float)roll_max/4500.0; _pitch_scaler = (float)pitch_max/4500.0; _collective_scalar = ((float)(collective_max-collective_min))/1000.0; if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing // roll factors _rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle)); _rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle)); _rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle)); // pitch factors _pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle)); _pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle)); _pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle)); // collective factors _collectiveFactor[CH_1] = 1; _collectiveFactor[CH_2] = 1; _collectiveFactor[CH_3] = 1; }else{ //H1 Swashplate, keep servo outputs seperated // roll factors _rollFactor[CH_1] = 1; _rollFactor[CH_2] = 0; _rollFactor[CH_3] = 0; // pitch factors _pitchFactor[CH_1] = 0; _pitchFactor[CH_2] = 1; _pitchFactor[CH_3] = 0; // collective factors _collectiveFactor[CH_1] = 0; _collectiveFactor[CH_2] = 0; _collectiveFactor[CH_3] = 1; } // servo min/max values _servo_1->radio_min = 1000; _servo_1->radio_max = 2000; _servo_2->radio_min = 1000; _servo_2->radio_max = 2000; _servo_3->radio_min = 1000; _servo_3->radio_max = 2000; // mark swash as initialised _swash_initialised = true; } // // heli_move_swash - moves swash plate to attitude of parameters passed in // - expected ranges: // roll : -4500 ~ 4500 // pitch: -4500 ~ 4500 // collective: 0 ~ 1000 // yaw: -4500 ~ 4500 // void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_out, int16_t yaw_out) { int16_t yaw_offset = 0; int16_t coll_out_scaled; if( servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)? // check if we need to free up the swash if( _swash_initialised ) { reset_swash(); } coll_out_scaled = coll_out * _collective_scalar + _rc_throttle->radio_min - 1000; }else{ // regular flight mode // check if we need to reinitialise the swash if( !_swash_initialised ) { init_swash(); } // rescale roll_out and pitch-out into the min and max ranges to provide linear motion // across the input range instead of stopping when the input hits the constrain value // these calculations are based on an assumption of the user specified roll_max and pitch_max // coming into this equation at 4500 or less, and based on the original assumption of the // total _servo_x.servo_out range being -4500 to 4500. roll_out = roll_out * _roll_scaler; roll_out = constrain(roll_out, (int16_t)-roll_max, (int16_t)roll_max); pitch_out = pitch_out * _pitch_scaler; pitch_out = constrain(pitch_out, (int16_t)-pitch_max, (int16_t)pitch_max); // scale collective pitch coll_out = constrain(coll_out, 0, 1000); coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000; // rudder feed forward based on collective if( !ext_gyro_enabled ) { yaw_offset = collective_yaw_effect * abs(coll_out_scaled - collective_mid); } } // swashplate servos _servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500); _servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500); if( swash_type == AP_MOTORS_HELI_SWASH_H1 ) { _servo_1->servo_out += 500; _servo_2->servo_out += 500; } _servo_3->servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3->radio_trim-1500); _servo_4->servo_out = yaw_out + yaw_offset; // use servo_out to calculate pwm_out and radio_out _servo_1->calc_pwm(); _servo_2->calc_pwm(); _servo_3->calc_pwm(); _servo_4->calc_pwm(); // actually move the servos _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_out); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_out); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_out); _rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_out); // to be compatible with other frame types motor_out[AP_MOTORS_MOT_1] = _servo_1->radio_out; motor_out[AP_MOTORS_MOT_2] = _servo_2->radio_out; motor_out[AP_MOTORS_MOT_3] = _servo_3->radio_out; motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out; // output gyro value if( ext_gyro_enabled ) { _rc->OutputCh(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain); } // InstantPWM if( _speed_hz == AP_MOTORS_SPEED_INSTANT_PWM ) { _rc->Force_Out0_Out1(); _rc->Force_Out2_Out3(); } }