/* Copyright (C) 2020 Kraus Hamdani Aerospace Inc. All rights reserved. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_ADSB_Sagetech.h" #if HAL_ADSB_SAGETECH_ENABLED #include <GCS_MAVLink/GCS.h> #include <AP_AHRS/AP_AHRS.h> #include <AP_RTC/AP_RTC.h> #include <AP_HAL/utility/sparse-endian.h> #include <stdio.h> #include <time.h> #include <string.h> #include <math.h> #define SAGETECH_SCALER_LATLNG (1.0f/2.145767E-5f) // 180/(2^23) #define SAGETECH_SCALER_KNOTS_TO_CMS ((KNOTS_TO_M_PER_SEC/0.125f) * 100.0f) #define SAGETECH_SCALER_ALTITUDE (1.0f/0.015625f) #define SAGETECH_SCALER_HEADING_CM ((360.0f/256.0f) * 100.0f) #define SAGETECH_VALIDFLAG_LATLNG (1U<<0) #define SAGETECH_VALIDFLAG_ALTITUDE (1U<<1) #define SAGETECH_VALIDFLAG_VELOCITY (1U<<2) #define SAGETECH_VALIDFLAG_GND_SPEED (1U<<3) #define SAGETECH_VALIDFLAG_HEADING (1U<<4) #define SAGETECH_VALIDFLAG_V_RATE_GEO (1U<<5) #define SAGETECH_VALIDFLAG_V_RATE_BARO (1U<<6) #define SAGETECH_VALIDFLAG_EST_LATLNG (1U<<7) #define SAGETECH_VALIDFLAG_EST_VELOCITY (1U<<8) // detect if any port is configured as Sagetech bool AP_ADSB_Sagetech::detect() { return AP::serialmanager().have_serial(AP_SerialManager::SerialProtocol_ADSB, 0); } // Init, called once after class is constructed bool AP_ADSB_Sagetech::init() { _port = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_ADSB, 0); return (_port != nullptr); } void AP_ADSB_Sagetech::update() { if (_port == nullptr) { return; } const uint32_t now_ms = AP_HAL::millis(); // ----------------------------- // read any available data on serial port // ----------------------------- uint32_t nbytes = MIN(_port->available(), 10 * PAYLOAD_XP_MAX_SIZE); while (nbytes-- > 0) { const int16_t data = (uint8_t)_port->read(); if (data < 0) { break; } if (parse_byte_XP((uint8_t)data)) { handle_packet_XP(message_in.packet); } } // while nbytes // ----------------------------- // handle timers for generating data // ----------------------------- if (!last_packet_initialize_ms || (now_ms - last_packet_initialize_ms >= 5000)) { last_packet_initialize_ms = now_ms; send_packet(MsgType_XP::Installation_Set); } else if (!last_packet_PreFlight_ms || (now_ms - last_packet_PreFlight_ms >= 8200)) { last_packet_PreFlight_ms = now_ms; // TODO: allow callsign to not require a reboot send_packet(MsgType_XP::Preflight_Set); } else if (now_ms - last_packet_Operating_ms >= 1000 && ( last_packet_Operating_ms == 0 || // send once at boot // send as data changes last_operating_squawk != _frontend.out_state.cfg.squawk_octal || abs(last_operating_alt - _frontend._my_loc.alt) > 1555 || // 1493cm == 49ft. The output resolution is 100ft per bit last_operating_rf_select != _frontend.out_state.cfg.rfSelect)) { last_packet_Operating_ms = now_ms; last_operating_squawk = _frontend.out_state.cfg.squawk_octal; last_operating_alt = _frontend._my_loc.alt; last_operating_rf_select = _frontend.out_state.cfg.rfSelect; send_packet(MsgType_XP::Operating_Set); } else if (now_ms - last_packet_GPS_ms >= (_frontend.out_state.is_flying ? 200 : 1000)) { // 1Hz when not flying, 5Hz when flying last_packet_GPS_ms = now_ms; send_packet(MsgType_XP::GPS_Set); } } void AP_ADSB_Sagetech::send_packet(const MsgType_XP type) { switch (type) { case MsgType_XP::Installation_Set: send_msg_Installation(); break; case MsgType_XP::Preflight_Set: send_msg_PreFlight(); break; case MsgType_XP::Operating_Set: send_msg_Operating(); break; case MsgType_XP::GPS_Set: send_msg_GPS(); break; default: break; } } void AP_ADSB_Sagetech::request_packet(const MsgType_XP type) { // set all bytes in packet to 0 via {} so we only need to set the ones we need to Packet_XP pkt {}; pkt.type = MsgType_XP::Request; pkt.id = 0; pkt.payload_length = 4; pkt.payload[0] = static_cast<uint8_t>(type); send_msg(pkt); } void AP_ADSB_Sagetech::handle_packet_XP(const Packet_XP &msg) { switch (msg.type) { case MsgType_XP::ACK: handle_ack(msg); break; case MsgType_XP::Installation_Response: case MsgType_XP::Preflight_Response: case MsgType_XP::Status_Response: // TODO add support for these break; case MsgType_XP::ADSB_StateVector_Report: case MsgType_XP::ADSB_ModeStatus_Report: case MsgType_XP::TISB_StateVector_Report: case MsgType_XP::TISB_ModeStatus_Report: case MsgType_XP::TISB_CorasePos_Report: case MsgType_XP::TISB_ADSB_Mgr_Report: handle_adsb_in_msg(msg); break; case MsgType_XP::Installation_Set: case MsgType_XP::Preflight_Set: case MsgType_XP::Operating_Set: case MsgType_XP::GPS_Set: case MsgType_XP::Request: // these are out-bound only and are not expected to be received case MsgType_XP::INVALID: break; } } void AP_ADSB_Sagetech::handle_ack(const Packet_XP &msg) { // ACK received! const uint8_t system_state = msg.payload[2]; transponder_type = (Transponder_Type)msg.payload[6]; const uint8_t prev_transponder_mode = last_ack_transponder_mode; last_ack_transponder_mode = (system_state >> 6) & 0x03; if (prev_transponder_mode != last_ack_transponder_mode) { static const char *mode_names[] = {"OFF", "STBY", "ON", "ON-ALT"}; if (last_ack_transponder_mode < ARRAY_SIZE(mode_names)) { gcs().send_text(MAV_SEVERITY_INFO, "ADSB: RF Mode: %s", mode_names[last_ack_transponder_mode]); } } } void AP_ADSB_Sagetech::handle_adsb_in_msg(const Packet_XP &msg) { AP_ADSB::adsb_vehicle_t vehicle {}; vehicle.last_update_ms = AP_HAL::millis(); switch (msg.type) { case MsgType_XP::ADSB_StateVector_Report: { // 0x91 const uint16_t validFlags = le16toh_ptr(&msg.payload[8]); vehicle.info.ICAO_address = le24toh_ptr(&msg.payload[10]); if (validFlags & SAGETECH_VALIDFLAG_LATLNG) { vehicle.info.lat = ((int32_t)le24toh_ptr(&msg.payload[20])) * SAGETECH_SCALER_LATLNG; vehicle.info.lon = ((int32_t)le24toh_ptr(&msg.payload[23])) * SAGETECH_SCALER_LATLNG; vehicle.info.flags |= ADSB_FLAGS_VALID_COORDS; } if (validFlags & SAGETECH_VALIDFLAG_ALTITUDE) { vehicle.info.altitude = (int32_t)le24toh_ptr(&msg.payload[26]); vehicle.info.flags |= ADSB_FLAGS_VALID_ALTITUDE; } if (validFlags & SAGETECH_VALIDFLAG_VELOCITY) { const float velNS = ((int32_t)le16toh_ptr(&msg.payload[29])) * SAGETECH_SCALER_KNOTS_TO_CMS; const float velEW = ((int32_t)le16toh_ptr(&msg.payload[31])) * SAGETECH_SCALER_KNOTS_TO_CMS; vehicle.info.hor_velocity = Vector2f(velEW, velNS).length(); vehicle.info.flags |= ADSB_FLAGS_VALID_VELOCITY; } if (validFlags & SAGETECH_VALIDFLAG_HEADING) { vehicle.info.heading = ((float)msg.payload[29]) * SAGETECH_SCALER_HEADING_CM; vehicle.info.flags |= ADSB_FLAGS_VALID_HEADING; } if ((validFlags & SAGETECH_VALIDFLAG_V_RATE_GEO) || (validFlags & SAGETECH_VALIDFLAG_V_RATE_BARO)) { vehicle.info.ver_velocity = (int16_t)le16toh_ptr(&msg.payload[38]); vehicle.info.flags |= ADSB_FLAGS_VERTICAL_VELOCITY_VALID; } _frontend.handle_adsb_vehicle(vehicle); break; } case MsgType_XP::ADSB_ModeStatus_Report: // 0x92 vehicle.info.ICAO_address = le24toh_ptr(&msg.payload[9]); if (msg.payload[16] != 0) { // if string is non-null, consider it valid memcpy(&vehicle.info, &msg.payload[16], 8); vehicle.info.flags |= ADSB_FLAGS_VALID_CALLSIGN; } _frontend.handle_adsb_vehicle(vehicle); break; case MsgType_XP::TISB_StateVector_Report: case MsgType_XP::TISB_ModeStatus_Report: case MsgType_XP::TISB_CorasePos_Report: case MsgType_XP::TISB_ADSB_Mgr_Report: // TODO return; default: return; } } // handling inbound byte and process it in the state machine // return true when a full packet has been received bool AP_ADSB_Sagetech::parse_byte_XP(const uint8_t data) { switch (message_in.state) { default: case ParseState::WaitingFor_Start: if (data == 0xA5) { message_in.state = ParseState::WaitingFor_AssmAddr; } break; case ParseState::WaitingFor_AssmAddr: message_in.state = (data == 0x01) ? ParseState::WaitingFor_MsgType : ParseState::WaitingFor_Start; break; case ParseState::WaitingFor_MsgType: message_in.packet.type = static_cast<MsgType_XP>(data); message_in.state = ParseState::WaitingFor_MsgId; break; case ParseState::WaitingFor_MsgId: message_in.packet.id = data; message_in.state = ParseState::WaitingFor_PayloadLen; break; case ParseState::WaitingFor_PayloadLen: message_in.packet.payload_length = data; message_in.index = 0; message_in.state = (data == 0) ? ParseState::WaitingFor_ChecksumFletcher : ParseState::WaitingFor_PayloadContents; break; case ParseState::WaitingFor_PayloadContents: message_in.packet.payload[message_in.index++] = data; if (message_in.index >= message_in.packet.payload_length) { message_in.state = ParseState::WaitingFor_ChecksumFletcher; message_in.index = 0; } break; case ParseState::WaitingFor_ChecksumFletcher: message_in.packet.checksumFletcher = data; message_in.state = ParseState::WaitingFor_Checksum; break; case ParseState::WaitingFor_Checksum: message_in.packet.checksum = data; message_in.state = ParseState::WaitingFor_End; if (checksum_verify_XP(message_in.packet)) { handle_packet_XP(message_in.packet); } break; case ParseState::WaitingFor_End: // we don't care if the end value matches message_in.state = ParseState::WaitingFor_Start; break; } return false; } // compute Sum and FletcherSum values into a single value // returns uint16_t with MSByte as Sum and LSByte FletcherSum uint16_t AP_ADSB_Sagetech::checksum_generate_XP(Packet_XP &msg) const { uint8_t sum = 0; uint8_t sumFletcher = 0; const uint8_t header_message_format[5] { 0xA5, // start 0x01, // assembly address static_cast<uint8_t>(msg.type), msg.id, msg.payload_length }; for (uint8_t i=0; i<5; i++) { sum += header_message_format[i]; sumFletcher += sum; } for (uint8_t i=0; i<msg.payload_length; i++) { sum += msg.payload[i]; sumFletcher += sum; } return UINT16_VALUE(sum, sumFletcher); } // computes checksum and returns true if it matches msg checksum bool AP_ADSB_Sagetech::checksum_verify_XP(Packet_XP &msg) const { const uint16_t checksum = checksum_generate_XP(msg); return (HIGHBYTE(checksum) == msg.checksum) && (LOWBYTE(checksum) == msg.checksumFletcher); } // computes checksum and assigns checksum values to msg void AP_ADSB_Sagetech::checksum_assign_XP(Packet_XP &msg) { const uint16_t checksum = checksum_generate_XP(msg); msg.checksum = HIGHBYTE(checksum); msg.checksumFletcher = LOWBYTE(checksum); } // send message to serial port void AP_ADSB_Sagetech::send_msg(Packet_XP &msg) { // generate and populate checksums. checksum_assign_XP(msg); const uint8_t message_format_header[5] { 0xA5, // start 0x01, // assembly address static_cast<uint8_t>(msg.type), msg.id, msg.payload_length }; const uint8_t message_format_tail[3] { msg.checksumFletcher, msg.checksum, 0x5A // end }; if (_port != nullptr) { _port->write(message_format_header, sizeof(message_format_header)); _port->write(msg.payload, msg.payload_length); _port->write(message_format_tail, sizeof(message_format_tail)); } } void AP_ADSB_Sagetech::send_msg_Installation() { Packet_XP pkt {}; pkt.type = MsgType_XP::Installation_Set; pkt.payload_length = 28; // 28== 0x1C // Mode C = 3, Mode S = 0 pkt.id = (transponder_type == Transponder_Type::Mode_C) ? 3 : 0; // // convert a decimal 123456 to 0x123456 // TODO: do a proper conversion. The param contains "131313" but what gets transmitted over the air is 0x200F1. const uint32_t icao_hex = convert_base_to_decimal(16, _frontend.out_state.cfg.ICAO_id_param); put_le24_ptr(&pkt.payload[0], icao_hex); memcpy(&pkt.payload[3], &_frontend.out_state.cfg.callsign, 8); pkt.payload[11] = 0; // airspeed MAX pkt.payload[12] = 0; // COM Port 0 baud, fixed at 57600 pkt.payload[13] = 0; // COM Port 1 baud, fixed at 57600 pkt.payload[14] = 0; // COM Port 2 baud, fixed at 57600 pkt.payload[15] = 1; // GPS from COM port 0 (this port) pkt.payload[16] = 1; // GPS Integrity pkt.payload[17] = _frontend.out_state.cfg.emitterType / 8; // Emitter Set pkt.payload[18] = _frontend.out_state.cfg.emitterType & 0x0F; // Emitter Type pkt.payload[19] = _frontend.out_state.cfg.lengthWidth; // Aircraft Size pkt.payload[20] = 0; // Altitude Encoder Offset pkt.payload[21] = 0; // Altitude Encoder Offset pkt.payload[22] = 0x07; // ADSB In Control, enable reading everything pkt.payload[23] = 30; // ADSB In Report max length COM Port 0 (this one) pkt.payload[24] = 0; // ADSB In Report max length COM Port 1 send_msg(pkt); } void AP_ADSB_Sagetech::send_msg_PreFlight() { Packet_XP pkt {}; pkt.type = MsgType_XP::Preflight_Set; pkt.id = 0; pkt.payload_length = 10; memcpy(&pkt.payload[0], &_frontend.out_state.cfg.callsign, 8); memset(&pkt.payload[8], 0, 2); send_msg(pkt); } void AP_ADSB_Sagetech::send_msg_Operating() { Packet_XP pkt {}; pkt.type = MsgType_XP::Operating_Set; pkt.id = 0; pkt.payload_length = 8; // squawk // param is saved as native octal so we need convert back to // decimal because Sagetech will convert it back to octal uint16_t squawk = convert_base_to_decimal(8, last_operating_squawk); put_le16_ptr(&pkt.payload[0], squawk); // altitude if (_frontend.out_state.cfg.rf_capable & 0x01) { const float alt_meters = last_operating_alt * 0.01f; const int32_t alt_feet = (int32_t)(alt_meters * FEET_TO_METERS); const int16_t alt_feet_adj = (alt_feet + 50) / 100; // 1 = 100 feet, 1 = 149 feet, 5 = 500 feet put_le16_ptr(&pkt.payload[2], alt_feet_adj); } else { // use integrated altitude - recommend by sagetech pkt.payload[2] = 0x80; pkt.payload[3] = 0x00; } // RF mode pkt.payload[4] = last_operating_rf_select; send_msg(pkt); } void AP_ADSB_Sagetech::send_msg_GPS() { Packet_XP pkt {}; pkt.type = MsgType_XP::GPS_Set; pkt.payload_length = 52; pkt.id = 0; const int32_t longitude = _frontend._my_loc.lng; const int32_t latitude = _frontend._my_loc.lat; // longitude and latitude // NOTE: these MUST be done in double or else we get roundoff in the maths const double lon_deg = longitude * (double)1.0e-7 * (longitude < 0 ? -1 : 1); const double lon_minutes = (lon_deg - int(lon_deg)) * 60; snprintf((char*)&pkt.payload[0], 12, "%03u%02u.%05u", (unsigned)lon_deg, (unsigned)lon_minutes, unsigned((lon_minutes - (int)lon_minutes) * 1.0E5)); const double lat_deg = latitude * (double)1.0e-7 * (latitude < 0 ? -1 : 1); const double lat_minutes = (lat_deg - int(lat_deg)) * 60; snprintf((char*)&pkt.payload[11], 11, "%02u%02u.%05u", (unsigned)lat_deg, (unsigned)lat_minutes, unsigned((lat_minutes - (int)lat_minutes) * 1.0E5)); // ground speed const Vector2f speed = AP::ahrs().groundspeed_vector(); float speed_knots = speed.length() * M_PER_SEC_TO_KNOTS; snprintf((char*)&pkt.payload[21], 7, "%03u.%02u", (unsigned)speed_knots, unsigned((speed_knots - (int)speed_knots) * 1.0E2)); // heading float heading = wrap_360(degrees(speed.angle())); snprintf((char*)&pkt.payload[27], 10, "%03u.%04u", unsigned(heading), unsigned((heading - (int)heading) * 1.0E4)); // hemisphere uint8_t hemisphere = 0; hemisphere |= (latitude >= 0) ? 0x01 : 0; // isNorth hemisphere |= (longitude >= 0) ? 0x02 : 0; // isEast hemisphere |= (AP::gps().status() < AP_GPS::GPS_OK_FIX_2D) ? 0x80 : 0; // isInvalid pkt.payload[35] = hemisphere; // time uint64_t time_usec; if (AP::rtc().get_utc_usec(time_usec)) { // not completely accurate, our time includes leap seconds and time_t should be without const time_t time_sec = time_usec / 1000000; struct tm* tm = gmtime(&time_sec); // format time string snprintf((char*)&pkt.payload[36], 11, "%02u%02u%06.3f", tm->tm_hour, tm->tm_min, tm->tm_sec + (time_usec % 1000000) * 1.0e-6); } else { memset(&pkt.payload[36],' ', 10); } send_msg(pkt); } /* * Convert base 8 or 16 to decimal. Used to convert an octal/hexadecimal value stored on a GCS as a string field in different format, but then transmitted over mavlink as a float which is always a decimal. * baseIn: base of input number * inputNumber: value currently in base "baseIn" to be converted to base "baseOut" * * Example: convert ADSB squawk octal "1200" stored in memory as 0x0280 to 0x04B0 * uint16_t squawk_decimal = convertMathBase(8, squawk_octal); */ uint32_t AP_ADSB_Sagetech::convert_base_to_decimal(const uint8_t baseIn, uint32_t inputNumber) { // Our only sensible input bases are 16 and 8 if (baseIn != 8 && baseIn != 16) { return inputNumber; } uint32_t outputNumber = 0; for (uint8_t i=0; inputNumber != 0; i++) { outputNumber += (inputNumber % 10) * powf(10, i); inputNumber /= 10; } return outputNumber; } #endif // HAL_ADSB_SAGETECH_ENABLED