/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Proximity.h" #include "AP_Proximity_LightWareSF40C_v09.h" #include "AP_Proximity_RPLidarA2.h" #include "AP_Proximity_TeraRangerTower.h" #include "AP_Proximity_TeraRangerTowerEvo.h" #include "AP_Proximity_RangeFinder.h" #include "AP_Proximity_MAV.h" #include "AP_Proximity_LightWareSF40C.h" #include "AP_Proximity_LightWareSF45B.h" #include "AP_Proximity_SITL.h" #include "AP_Proximity_AirSimSITL.h" extern const AP_HAL::HAL &hal; // table of user settable parameters const AP_Param::GroupInfo AP_Proximity::var_info[] = { // 0 is reserved for possible addition of an ENABLED parameter // @Param: _TYPE // @DisplayName: Proximity type // @Description: What type of proximity sensor is connected // @Values: 0:None,7:LightwareSF40c,1:LightWareSF40C-legacy,2:MAVLink,3:TeraRangerTower,4:RangeFinder,5:RPLidarA2,6:TeraRangerTowerEvo,8:LightwareSF45B,10:SITL,12:AirSimSITL // @RebootRequired: True // @User: Standard AP_GROUPINFO("_TYPE", 1, AP_Proximity, _type[0], 0), // @Param: _ORIENT // @DisplayName: Proximity sensor orientation // @Description: Proximity sensor orientation // @Values: 0:Default,1:Upside Down // @User: Standard AP_GROUPINFO("_ORIENT", 2, AP_Proximity, _orientation[0], 0), // @Param: _YAW_CORR // @DisplayName: Proximity sensor yaw correction // @Description: Proximity sensor yaw correction // @Units: deg // @Range: -180 180 // @User: Standard AP_GROUPINFO("_YAW_CORR", 3, AP_Proximity, _yaw_correction[0], 0), // @Param: _IGN_ANG1 // @DisplayName: Proximity sensor ignore angle 1 // @Description: Proximity sensor ignore angle 1 // @Units: deg // @Range: 0 360 // @User: Standard AP_GROUPINFO("_IGN_ANG1", 4, AP_Proximity, _ignore_angle_deg[0], 0), // @Param: _IGN_WID1 // @DisplayName: Proximity sensor ignore width 1 // @Description: Proximity sensor ignore width 1 // @Units: deg // @Range: 0 127 // @User: Standard AP_GROUPINFO("_IGN_WID1", 5, AP_Proximity, _ignore_width_deg[0], 0), // @Param: _IGN_ANG2 // @DisplayName: Proximity sensor ignore angle 2 // @Description: Proximity sensor ignore angle 2 // @Units: deg // @Range: 0 360 // @User: Standard AP_GROUPINFO("_IGN_ANG2", 6, AP_Proximity, _ignore_angle_deg[1], 0), // @Param: _IGN_WID2 // @DisplayName: Proximity sensor ignore width 2 // @Description: Proximity sensor ignore width 2 // @Units: deg // @Range: 0 127 // @User: Standard AP_GROUPINFO("_IGN_WID2", 7, AP_Proximity, _ignore_width_deg[1], 0), // @Param: _IGN_ANG3 // @DisplayName: Proximity sensor ignore angle 3 // @Description: Proximity sensor ignore angle 3 // @Units: deg // @Range: 0 360 // @User: Standard AP_GROUPINFO("_IGN_ANG3", 8, AP_Proximity, _ignore_angle_deg[2], 0), // @Param: _IGN_WID3 // @DisplayName: Proximity sensor ignore width 3 // @Description: Proximity sensor ignore width 3 // @Units: deg // @Range: 0 127 // @User: Standard AP_GROUPINFO("_IGN_WID3", 9, AP_Proximity, _ignore_width_deg[2], 0), // @Param: _IGN_ANG4 // @DisplayName: Proximity sensor ignore angle 4 // @Description: Proximity sensor ignore angle 4 // @Units: deg // @Range: 0 360 // @User: Standard AP_GROUPINFO("_IGN_ANG4", 10, AP_Proximity, _ignore_angle_deg[3], 0), // @Param: _IGN_WID4 // @DisplayName: Proximity sensor ignore width 4 // @Description: Proximity sensor ignore width 4 // @Units: deg // @Range: 0 127 // @User: Standard AP_GROUPINFO("_IGN_WID4", 11, AP_Proximity, _ignore_width_deg[3], 0), // @Param: _IGN_ANG5 // @DisplayName: Proximity sensor ignore angle 5 // @Description: Proximity sensor ignore angle 5 // @Units: deg // @Range: 0 360 // @User: Standard AP_GROUPINFO("_IGN_ANG5", 12, AP_Proximity, _ignore_angle_deg[4], 0), // @Param: _IGN_WID5 // @DisplayName: Proximity sensor ignore width 5 // @Description: Proximity sensor ignore width 5 // @Units: deg // @Range: 0 127 // @User: Standard AP_GROUPINFO("_IGN_WID5", 13, AP_Proximity, _ignore_width_deg[4], 0), // @Param: _IGN_ANG6 // @DisplayName: Proximity sensor ignore angle 6 // @Description: Proximity sensor ignore angle 6 // @Units: deg // @Range: 0 360 // @User: Standard AP_GROUPINFO("_IGN_ANG6", 14, AP_Proximity, _ignore_angle_deg[5], 0), // @Param: _IGN_WID6 // @DisplayName: Proximity sensor ignore width 6 // @Description: Proximity sensor ignore width 6 // @Units: deg // @Range: 0 127 // @User: Standard AP_GROUPINFO("_IGN_WID6", 15, AP_Proximity, _ignore_width_deg[5], 0), // @Param{Copter}: _IGN_GND // @DisplayName: Proximity sensor land detection // @Description: Ignore proximity data that is within 1 meter of the ground below the vehicle. This requires a downward facing rangefinder // @Values: 0:Disabled, 1:Enabled // @User: Standard AP_GROUPINFO_FRAME("_IGN_GND", 16, AP_Proximity, _ign_gnd_enable, 1, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), // @Param: _LOG_RAW // @DisplayName: Proximity raw distances log // @Description: Set this parameter to one if logging unfiltered(raw) distances from sensor should be enabled // @Values: 0:Off, 1:On // @User: Advanced AP_GROUPINFO("_LOG_RAW", 17, AP_Proximity, _raw_log_enable, 0), AP_GROUPEND }; AP_Proximity::AP_Proximity() { AP_Param::setup_object_defaults(this, var_info); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (_singleton != nullptr) { AP_HAL::panic("AP_Proximity must be singleton"); } #endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL _singleton = this; } // initialise the Proximity class. We do detection of attached sensors here // we don't allow for hot-plugging of sensors (i.e. reboot required) void AP_Proximity::init(void) { if (num_instances != 0) { // init called a 2nd time? return; } for (uint8_t i=0; iupdate(); } // work out primary instance - first sensor returning good data for (int8_t i=num_instances-1; i>=0; i--) { if (drivers[i] != nullptr && (state[i].status == Status::Good)) { primary_instance = i; } } } // return sensor orientation uint8_t AP_Proximity::get_orientation(uint8_t instance) const { if (!valid_instance(instance)) { return 0; } return _orientation[instance].get(); } // return sensor yaw correction int16_t AP_Proximity::get_yaw_correction(uint8_t instance) const { if (!valid_instance(instance)) { return 0; } return _yaw_correction[instance].get(); } // return sensor health AP_Proximity::Status AP_Proximity::get_status(uint8_t instance) const { // sanity check instance number if (!valid_instance(instance)) { return Status::NotConnected; } return state[instance].status; } AP_Proximity::Status AP_Proximity::get_status() const { return get_status(primary_instance); } // handle mavlink DISTANCE_SENSOR messages void AP_Proximity::handle_msg(const mavlink_message_t &msg) { for (uint8_t i=0; ihandle_msg(msg); } } } // detect if an instance of a proximity sensor is connected. void AP_Proximity::detect_instance(uint8_t instance) { switch (get_type(instance)) { case Type::None: return; case Type::SF40C_v09: if (AP_Proximity_LightWareSF40C_v09::detect()) { state[instance].instance = instance; drivers[instance] = new AP_Proximity_LightWareSF40C_v09(*this, state[instance]); return; } break; case Type::RPLidarA2: if (AP_Proximity_RPLidarA2::detect()) { state[instance].instance = instance; drivers[instance] = new AP_Proximity_RPLidarA2(*this, state[instance]); return; } break; case Type::MAV: state[instance].instance = instance; drivers[instance] = new AP_Proximity_MAV(*this, state[instance]); return; case Type::TRTOWER: if (AP_Proximity_TeraRangerTower::detect()) { state[instance].instance = instance; drivers[instance] = new AP_Proximity_TeraRangerTower(*this, state[instance]); return; } break; case Type::TRTOWEREVO: if (AP_Proximity_TeraRangerTowerEvo::detect()) { state[instance].instance = instance; drivers[instance] = new AP_Proximity_TeraRangerTowerEvo(*this, state[instance]); return; } break; case Type::RangeFinder: state[instance].instance = instance; drivers[instance] = new AP_Proximity_RangeFinder(*this, state[instance]); return; case Type::SF40C: if (AP_Proximity_LightWareSF40C::detect()) { state[instance].instance = instance; drivers[instance] = new AP_Proximity_LightWareSF40C(*this, state[instance]); return; } break; case Type::SF45B: if (AP_Proximity_LightWareSF45B::detect()) { state[instance].instance = instance; drivers[instance] = new AP_Proximity_LightWareSF45B(*this, state[instance]); return; } break; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case Type::SITL: state[instance].instance = instance; drivers[instance] = new AP_Proximity_SITL(*this, state[instance]); return; case Type::AirSimSITL: state[instance].instance = instance; drivers[instance] = new AP_Proximity_AirSimSITL(*this, state[instance]); return; #endif } } // get distances in 8 directions. used for sending distances to ground station bool AP_Proximity::get_horizontal_distances(Proximity_Distance_Array &prx_dist_array) const { if (!valid_instance(primary_instance)) { return false; } // get distances from backend return drivers[primary_instance]->get_horizontal_distances(prx_dist_array); } // get raw and filtered distances in 8 directions per layer. used for logging bool AP_Proximity::get_active_layer_distances(uint8_t layer, AP_Proximity::Proximity_Distance_Array &prx_dist_array, AP_Proximity::Proximity_Distance_Array &prx_filt_dist_array) const { if (!valid_instance(primary_instance)) { return false; } // get distances from backend return drivers[primary_instance]->get_active_layer_distances(layer, prx_dist_array, prx_filt_dist_array); } // get total number of obstacles, used in GPS based Simple Avoidance uint8_t AP_Proximity::get_obstacle_count() const { if (!valid_instance(primary_instance)) { return 0; } return drivers[primary_instance]->get_obstacle_count(); } // get number of layers. uint8_t AP_Proximity::get_num_layers() const { if (!valid_instance(primary_instance)) { return 0; } return drivers[primary_instance]->get_num_layers(); } // get vector to obstacle based on obstacle_num passed, used in GPS based Simple Avoidance bool AP_Proximity::get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const { if (!valid_instance(primary_instance)) { return false; } return drivers[primary_instance]->get_obstacle(obstacle_num, vec_to_obstacle); } // returns shortest distance to "obstacle_num" obstacle, from a line segment formed between "seg_start" and "seg_end" // used in GPS based Simple Avoidance float AP_Proximity::distance_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const { if (!valid_instance(primary_instance)) { return FLT_MAX; } return drivers[primary_instance]->distance_to_obstacle(obstacle_num, seg_start, seg_end, closest_point); } // get distance and angle to closest object (used for pre-arm check) // returns true on success, false if no valid readings bool AP_Proximity::get_closest_object(float& angle_deg, float &distance) const { if (!valid_instance(primary_instance)) { return false; } // get closest object from backend return drivers[primary_instance]->get_closest_object(angle_deg, distance); } // get number of objects, used for non-GPS avoidance uint8_t AP_Proximity::get_object_count() const { if (!valid_instance(primary_instance)) { return 0; } // get count from backend return drivers[primary_instance]->get_horizontal_object_count(); } // get an object's angle and distance, used for non-GPS avoidance // returns false if no angle or distance could be returned for some reason bool AP_Proximity::get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const { if (!valid_instance(primary_instance)) { return false; } // get angle and distance from backend return drivers[primary_instance]->get_horizontal_object_angle_and_distance(object_number, angle_deg, distance); } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity::distance_max() const { if (!valid_instance(primary_instance)) { return 0.0f; } // get maximum distance from backend return drivers[primary_instance]->distance_max(); } float AP_Proximity::distance_min() const { if (!valid_instance(primary_instance)) { return 0.0f; } // get minimum distance from backend return drivers[primary_instance]->distance_min(); } // get distance in meters upwards, returns true on success bool AP_Proximity::get_upward_distance(uint8_t instance, float &distance) const { if (!valid_instance(instance)) { return false; } // get upward distance from backend return drivers[instance]->get_upward_distance(distance); } bool AP_Proximity::get_upward_distance(float &distance) const { return get_upward_distance(primary_instance, distance); } AP_Proximity::Type AP_Proximity::get_type(uint8_t instance) const { if (instance < PROXIMITY_MAX_INSTANCES) { return (Type)((uint8_t)_type[instance]); } return Type::None; } bool AP_Proximity::sensor_present() const { return get_status() != Status::NotConnected; } bool AP_Proximity::sensor_enabled() const { return get_type(primary_instance) != Type::None; } bool AP_Proximity::sensor_failed() const { return get_status() != Status::Good; } // set alt as read from dowward facing rangefinder. Tilt is already adjusted for. void AP_Proximity::set_rangefinder_alt(bool use, bool healthy, float alt_cm) { if (!valid_instance(primary_instance)) { return; } // store alt at the backend drivers[primary_instance]->set_rangefinder_alt(use, healthy, alt_cm); } AP_Proximity *AP_Proximity::_singleton; namespace AP { AP_Proximity *proximity() { return AP_Proximity::get_singleton(); } }