/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "stm32_util.h" #include #include #include #include #include static int64_t utc_time_offset; /* setup the timer capture digital filter for a channel */ void stm32_timer_set_input_filter(stm32_tim_t *tim, uint8_t channel, uint8_t filter_mode) { switch (channel) { case 0: tim->CCMR1 |= STM32_TIM_CCMR1_IC1F(filter_mode); break; case 1: tim->CCMR1 |= STM32_TIM_CCMR1_IC2F(filter_mode); break; case 2: tim->CCMR2 |= STM32_TIM_CCMR2_IC3F(filter_mode); break; case 3: tim->CCMR2 |= STM32_TIM_CCMR2_IC4F(filter_mode); break; } } /* set the input source of a timer channel */ void stm32_timer_set_channel_input(stm32_tim_t *tim, uint8_t channel, uint8_t input_source) { switch (channel) { case 0: tim->CCER &= ~STM32_TIM_CCER_CC1E; tim->CCMR1 &= ~STM32_TIM_CCMR1_CC1S_MASK; tim->CCMR1 |= STM32_TIM_CCMR1_CC1S(input_source); tim->CCER |= STM32_TIM_CCER_CC1E; break; case 1: tim->CCER &= ~STM32_TIM_CCER_CC2E; tim->CCMR1 &= ~STM32_TIM_CCMR1_CC2S_MASK; tim->CCMR1 |= STM32_TIM_CCMR1_CC2S(input_source); tim->CCER |= STM32_TIM_CCER_CC2E; break; case 2: tim->CCER &= ~STM32_TIM_CCER_CC3E; tim->CCMR2 &= ~STM32_TIM_CCMR2_CC3S_MASK; tim->CCMR2 |= STM32_TIM_CCMR2_CC3S(input_source); tim->CCER |= STM32_TIM_CCER_CC3E; break; case 3: tim->CCER &= ~STM32_TIM_CCER_CC4E; tim->CCMR2 &= ~STM32_TIM_CCMR2_CC4S_MASK; tim->CCMR2 |= STM32_TIM_CCMR2_CC4S(input_source); tim->CCER |= STM32_TIM_CCER_CC4E; break; } } #if CH_DBG_ENABLE_STACK_CHECK == TRUE && !defined(HAL_BOOTLOADER_BUILD) void show_stack_usage(void) { thread_t *tp; tp = chRegFirstThread(); do { uint32_t stklimit = (uint32_t)tp->wabase; uint8_t *p = (uint8_t *)tp->wabase; while (*p == CH_DBG_STACK_FILL_VALUE) { p++; } uint32_t stack_left = ((uint32_t)p) - stklimit; printf("%s %u\n", tp->name, (unsigned)stack_left); tp = chRegNextThread(tp); } while (tp != NULL); } #endif /* set the utc time */ void stm32_set_utc_usec(uint64_t time_utc_usec) { uint64_t now = hrt_micros64(); if (now <= time_utc_usec) { utc_time_offset = time_utc_usec - now; } } /* get system clock in UTC microseconds */ uint64_t stm32_get_utc_usec() { return hrt_micros64() + utc_time_offset; } struct utc_tm { uint8_t tm_year; // since 1900 uint8_t tm_mon; // zero based uint8_t tm_mday; // zero based uint8_t tm_hour; uint8_t tm_min; uint8_t tm_sec; }; /* return true if a year is a leap year */ static bool is_leap(uint32_t y) { y += 1900; return (y % 4) == 0 && ((y % 100) != 0 || (y % 400) == 0); } static const uint8_t ndays[2][12] ={ {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}}; /* parse a seconds since 1970 into a utc_tm structure code based on _der_gmtime from samba */ static void parse_utc_seconds(uint64_t utc_sec, struct utc_tm *tm) { uint32_t secday = utc_sec % (3600U * 24U); uint32_t days = utc_sec / (3600U * 24U); memset(tm, 0, sizeof(*tm)); tm->tm_sec = secday % 60U; tm->tm_min = (secday % 3600U) / 60U; tm->tm_hour = secday / 3600U; tm->tm_year = 70; if (days > (2000 * 365)) { // don't look for dates too far into the future return; } while (true) { unsigned dayinyear = (is_leap(tm->tm_year) ? 366 : 365); if (days < dayinyear) { break; } tm->tm_year += 1; days -= dayinyear; } tm->tm_mon = 0; while (true) { unsigned daysinmonth = ndays[is_leap(tm->tm_year)?1:0][tm->tm_mon]; if (days < daysinmonth) { break; } days -= daysinmonth; tm->tm_mon++; } tm->tm_mday = days + 1; } /* get time for fat filesystem. This is based on rtcConvertDateTimeToFAT from the ChibiOS RTC driver. We don't use the hw RTC clock as it is very inaccurate */ uint32_t get_fattime() { if (utc_time_offset == 0) { // return a fixed time return ((uint32_t)0 | (1 << 16)) | (1 << 21); } uint64_t utc_usec = stm32_get_utc_usec(); uint64_t utc_sec = utc_usec / 1000000UL; struct utc_tm tm; parse_utc_seconds(utc_sec, &tm); uint32_t fattime; fattime = tm.tm_sec >> 1U; fattime |= tm.tm_min << 5U; fattime |= tm.tm_hour << 11U; fattime |= tm.tm_mday << 16U; fattime |= (tm.tm_mon+1) << 21U; fattime |= (uint32_t)((tm.tm_year-80) << 25U); return fattime; } #if !defined(NO_FASTBOOT) // get RTC backup registers starting at given idx void get_rtc_backup(uint8_t idx, uint32_t *v, uint8_t n) { while (n--) { #if defined(STM32F1) (void)idx; __IO uint32_t *dr = (__IO uint32_t *)&BKP->DR1; *v++ = (dr[n/2]&0xFFFF) | (dr[n/2+1]<<16); #elif defined(STM32G4) *v++ = ((__IO uint32_t *)&TAMP->BKP0R)[idx++]; #else *v++ = ((__IO uint32_t *)&RTC->BKP0R)[idx++]; #endif } } // set n RTC backup registers starting at given idx void set_rtc_backup(uint8_t idx, const uint32_t *v, uint8_t n) { #if !defined(STM32F1) if ((RCC->BDCR & RCC_BDCR_RTCEN) == 0) { RCC->BDCR |= STM32_RTCSEL; RCC->BDCR |= RCC_BDCR_RTCEN; } #ifdef PWR_CR_DBP PWR->CR |= PWR_CR_DBP; #else PWR->CR1 |= PWR_CR1_DBP; #endif #endif while (n--) { #if defined(STM32F1) (void)idx; __IO uint32_t *dr = (__IO uint32_t *)&BKP->DR1; dr[n/2] = (*v) & 0xFFFF; dr[n/2+1] = (*v) >> 16; #elif defined(STM32G4) ((__IO uint32_t *)&TAMP->BKP0R)[idx++] = *v++; #else ((__IO uint32_t *)&RTC->BKP0R)[idx++] = *v++; #endif } } // see if RTC registers is setup for a fast reboot enum rtc_boot_magic check_fast_reboot(void) { uint32_t v; get_rtc_backup(0, &v, 1); return (enum rtc_boot_magic)v; } // set RTC register for a fast reboot void set_fast_reboot(enum rtc_boot_magic v) { if (check_fast_reboot() != v) { uint32_t vv = (uint32_t)v; set_rtc_backup(0, &vv, 1); } } #else // NO_FASTBOOT // set n RTC backup registers starting at given idx void set_rtc_backup(uint8_t idx, const uint32_t *v, uint8_t n) { (void)idx; (void)v; (void)n; } // get RTC backup registers starting at given idx void get_rtc_backup(uint8_t idx, uint32_t *v, uint8_t n) { (void)idx; (void)v; (void)n; } #endif // NO_FASTBOOT /* enable peripheral power if needed This is done late to prevent problems with CTS causing SiK radios to stay in the bootloader. A SiK radio will stay in the bootloader if CTS is held to GND on boot */ void peripheral_power_enable(void) { #if defined(HAL_GPIO_PIN_nVDD_5V_PERIPH_EN) || defined(HAL_GPIO_PIN_nVDD_5V_HIPOWER_EN) || defined(HAL_GPIO_PIN_VDD_3V3_SENSORS_EN) || defined(HAL_GPIO_PIN_nVDD_3V3_SD_CARD_EN) || defined(HAL_GPIO_PIN_VDD_3V3_SD_CARD_EN) // we don't know what state the bootloader had the CTS pin in, so // wait here with it pulled up from the PAL table for enough time // for the radio to be definately powered down uint8_t i; for (i=0; i<100; i++) { // use a loop as this may be a 16 bit timer chThdSleep(chTimeMS2I(1)); } #ifdef HAL_GPIO_PIN_nVDD_5V_PERIPH_EN palWriteLine(HAL_GPIO_PIN_nVDD_5V_PERIPH_EN, 0); #endif #ifdef HAL_GPIO_PIN_nVDD_5V_HIPOWER_EN palWriteLine(HAL_GPIO_PIN_nVDD_5V_HIPOWER_EN, 0); #endif #ifdef HAL_GPIO_PIN_VDD_5V_HIPOWER_EN palWriteLine(HAL_GPIO_PIN_VDD_5V_HIPOWER_EN, 1); #endif #ifdef HAL_GPIO_PIN_VDD_3V3_SENSORS_EN // the TBS-Colibri-F7 needs PE3 low at power on palWriteLine(HAL_GPIO_PIN_VDD_3V3_SENSORS_EN, 1); #endif #ifdef HAL_GPIO_PIN_nVDD_3V3_SD_CARD_EN // the TBS-Colibri-F7 needs PG7 low for SD card palWriteLine(HAL_GPIO_PIN_nVDD_3V3_SD_CARD_EN, 0); #endif #ifdef HAL_GPIO_PIN_VDD_3V3_SD_CARD_EN // others need it active high palWriteLine(HAL_GPIO_PIN_VDD_3V3_SD_CARD_EN, 1); #endif for (i=0; i<20; i++) { // give 20ms for sensors to settle chThdSleep(chTimeMS2I(1)); } #endif } #if defined(STM32F7) || defined(STM32H7) || defined(STM32F4) || defined(STM32F3) || defined(STM32G4) || defined(STM32L4) /* read mode of a pin. This allows a pin config to be read, changed and then written back */ iomode_t palReadLineMode(ioline_t line) { ioportid_t port = PAL_PORT(line); uint8_t pad = PAL_PAD(line); iomode_t ret = 0; ret |= (port->MODER >> (pad*2)) & 0x3; ret |= ((port->OTYPER >> pad)&1) << 2; ret |= ((port->OSPEEDR >> (pad*2))&3) << 3; ret |= ((port->PUPDR >> (pad*2))&3) << 5; if (pad < 8) { ret |= ((port->AFRL >> (pad*4))&0xF) << 7; } else { ret |= ((port->AFRH >> ((pad-8)*4))&0xF) << 7; } return ret; } /* set pin as pullup, pulldown or floating */ void palLineSetPushPull(ioline_t line, enum PalPushPull pp) { ioportid_t port = PAL_PORT(line); uint8_t pad = PAL_PAD(line); port->PUPDR = (port->PUPDR & ~(3<<(pad*2))) | (pp<<(pad*2)); } #endif // F7, H7, F4 void stm32_cacheBufferInvalidate(const void *p, size_t size) { cacheBufferInvalidate(p, size); } void stm32_cacheBufferFlush(const void *p, size_t size) { cacheBufferFlush(p, size); } #ifdef HAL_GPIO_PIN_FAULT /* optional support for hard-fault debugging using soft-serial output to a pin To use this setup a pin like this: Pxx FAULT OUTPUT HIGH for some pin Pxx On a STM32F405 the baudrate will be around 42kBaud. Use the auto-baud function on your logic analyser to decode */ /* send one bit out a debug line */ static void fault_send_bit(ioline_t line, uint8_t b) { palWriteLine(line, b); for (uint32_t i=0; i<1000; i++) { palWriteLine(line, b); } } /* send a byte out a debug line */ static void fault_send_byte(ioline_t line, uint8_t b) { fault_send_bit(line, 0); // start bit for (uint8_t i=0; i<8; i++) { uint8_t bit = (b & (1U<name); // if we get here then we are armed and got a stack overflow. We // will report an internal error and keep trying to fly. We are // quite likely to crash anyway due to memory corruption. The // watchdog data should record the thread name and fault type #else (void)tp; #endif } #if CH_DBG_ENABLE_STACK_CHECK == TRUE /* check how much stack is free given a stack base. Assumes the fill byte is 0x55 */ uint32_t stack_free(void *stack_base) { const uint32_t *p = (uint32_t *)stack_base; const uint32_t canary_word = 0x55555555; while (*p == canary_word) { p++; } return ((uint32_t)p) - (uint32_t)stack_base; } #endif #if HAL_USE_HW_RNG && defined(RNG) static bool stm32_rand_generate(uint32_t *val) { uint32_t error_bits = 0; error_bits = RNG_SR_SEIS | RNG_SR_CEIS; /* Check for error flags and if data is ready. */ if (((RNG->SR & error_bits) == 0) && ((RNG->SR & RNG_SR_DRDY) == RNG_SR_DRDY)) { *val = RNG->DR; } else { return false; } return true; } bool stm32_rand_generate_blocking(unsigned char* output, unsigned int sz, uint32_t timeout_us) { unsigned int i = 0; uint32_t run_until = hrt_micros32() + timeout_us; uint32_t val; while ((i < sz) && (hrt_micros32() < run_until)) { /* If not aligned or there is odd/remainder */ if( (i + sizeof(uint32_t)) > sz || ((uint32_t)&output[i] % sizeof(uint32_t)) != 0) { /* Single byte at a time */ if (stm32_rand_generate(&val)) { output[i] = val; i++; } } else { /* Use native 32 bit copy instruction */ if (stm32_rand_generate((uint32_t*)&output[i])) { i += sizeof(uint32_t); } } } return i >= sz; } unsigned int stm32_rand_generate_nonblocking(unsigned char* output, unsigned int sz) { if ((RNG->SR & RNG_SR_DRDY) != RNG_SR_DRDY) { return false; } unsigned int i = 0; uint32_t val; while (i < sz) { /* If not aligned or there is odd/remainder */ if( (i + sizeof(uint32_t)) > sz || ((uint32_t)&output[i] % sizeof(uint32_t)) != 0) { /* Single byte at a time */ if (stm32_rand_generate(&val)) { output[i] = val; i++; } else { break; } } else { /* Use native 32 bit copy instruction */ if (stm32_rand_generate((uint32_t*)&output[i])) { i += sizeof(uint32_t); } else { break; } } } return i; } #endif // #if HAL_USE_HW_RNG && defined(RNG)