/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define THISFIRMWARE "ArduCopter V2.0.50 Beta" /* ArduCopter Version 2.0 Beta Authors: Jason Short Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier This firmware is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Special Thanks for Contributors: Hein Hollander :Octo Support Dani Saez :V Ocoto Support Max Levine :Tri Support, Graphics Jose Julio :Stabilization Control laws Randy MacKay :Heli Support Jani Hiriven :Testing feedback Andrew Tridgell :Mavlink Support James Goppert :Mavlink Support Doug Weibel :Libraries Mike Smith :Libraries, Coding support HappyKillmore :Mavlink GCS Michael Oborne :Mavlink GCS Jack Dunkle :Alpha testing Christof Schmid :Alpha testing Oliver :Piezo support Guntars :Arming safety suggestion And much more so PLEASE PM me on DIYDRONES to add your contribution to the List */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// // AVR runtime #include #include #include #include // Libraries #include #include #include // ArduPilot Mega RC Library #include // ArduPilot GPS library #include // Arduino I2C lib #include // Arduino SPI lib #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include // ArduPilot Mega BMP085 Library #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega IMU Library #include // ArduPilot Mega DCM Library #include // PI library #include // RC Channel Library #include // Range finder library #include // Optical Flow library #include #include // APM relay #include // MAVLink GCS definitions #include // Configuration #include "defines.h" #include "config.h" // Local modules #include "Parameters.h" #include "GCS.h" //////////////////////////////////////////////////////////////////////////////// // Serial ports //////////////////////////////////////////////////////////////////////////////// // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. // FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port FastSerialPort3(Serial3); // Telemetry port //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; //////////////////////////////////////////////////////////////////////////////// // prototypes static void update_events(void); //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED // real sensors AP_ADC_ADS7844 adc; APM_BMP085_Class barometer; AP_Compass_HMC5843 compass(Parameters::k_param_compass); #ifdef OPTFLOW_ENABLED AP_OpticalFlow_ADNS3080 optflow; #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 AP_GPS_MTK16 g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(NULL); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_ADC_HIL adc; APM_BMP085_HIL_Class barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver(NULL); #elif HIL_MODE == HIL_MODE_ATTITUDE AP_ADC_HIL adc; AP_DCM_HIL dcm; AP_GPS_HIL g_gps_driver(NULL); AP_Compass_HIL compass; // never used AP_IMU_Shim imu; // never used #ifdef OPTFLOW_ENABLED AP_OpticalFlow_ADNS3080 optflow; #endif static int32_t gps_base_alt; #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE #if HIL_MODE != HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_SENSORS // Normal AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration); #else // hil imu AP_IMU_Shim imu; #endif // normal dcm AP_DCM dcm(&imu, g_gps); #endif //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// GCS_MAVLINK gcs0(Parameters::k_param_streamrates_port0); GCS_MAVLINK gcs3(Parameters::k_param_streamrates_port3); //////////////////////////////////////////////////////////////////////////////// // SONAR selection //////////////////////////////////////////////////////////////////////////////// // ModeFilter sonar_mode_filter; #if SONAR_TYPE == MAX_SONAR_XL AP_RangeFinder_MaxsonarXL sonar(&adc, &sonar_mode_filter);//(SONAR_PORT, &adc); #else #error Unrecognised SONAR_TYPE setting. #endif // agmatthews USERHOOKS //////////////////////////////////////////////////////////////////////////////// // User variables //////////////////////////////////////////////////////////////////////////////// #ifdef USERHOOK_VARIABLES #include USERHOOK_VARIABLES #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// static const char *comma = ","; static const char* flight_mode_strings[] = { "STABILIZE", "ACRO", "ALT_HOLD", "AUTO", "GUIDED", "LOITER", "RTL", "CIRCLE", "POSITION"}; /* Radio values Channel assignments 1 Ailerons (rudder if no ailerons) 2 Elevator 3 Throttle 4 Rudder (if we have ailerons) 5 Mode - 3 position switch 6 User assignable 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) 8 TBD */ // temp static int y_actual_speed; static int y_rate_error; // calc the static int x_actual_speed; static int x_rate_error; // Radio // ----- static byte control_mode = STABILIZE; static byte old_control_mode = STABILIZE; static byte oldSwitchPosition; // for remembering the control mode switch static int motor_out[8]; static bool do_simple = false; // Heli // ---- #if FRAME_CONFIG == HELI_FRAME static float heli_rollFactor[3], heli_pitchFactor[3]; // only required for 3 swashplate servos static int heli_servo_min[3], heli_servo_max[3]; // same here. for yaw servo we use heli_servo4_min/max parameter directly static long heli_servo_out[4]; // used for servo averaging for analog servos static int heli_servo_out_count = 0; // use for servo averaging #endif // Failsafe // -------- static boolean failsafe; // did our throttle dip below the failsafe value? static boolean ch3_failsafe; static boolean motor_armed; static boolean motor_auto_armed; // if true, // PIDs // ---- static Vector3f omega; float tuning_value; // LED output // ---------- static boolean motor_light; // status of the Motor safety static boolean GPS_light; // status of the GPS light static byte led_mode = NORMAL_LEDS; // GPS variables // ------------- static const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage static float scaleLongUp = 1; // used to reverse longitude scaling static float scaleLongDown = 1; // used to reverse longitude scaling static byte ground_start_count = 10; // have we achieved first lock and set Home? static bool did_ground_start = false; // have we ground started after first arming // Location & Navigation // --------------------- static const float radius_of_earth = 6378100; // meters static const float gravity = 9.81; // meters/ sec^2 static long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target static byte wp_control; // used to control - navgation or loiter static byte command_must_index; // current command memory location static byte command_may_index; // current command memory location static byte command_must_ID; // current command ID static byte command_may_ID; // current command ID static byte wp_verify_byte; // used for tracking state of navigating waypoints static float cos_roll_x = 1; static float cos_pitch_x = 1; static float cos_yaw_x = 1; static float sin_pitch_y, sin_yaw_y, sin_roll_y; static long initial_simple_bearing; // used for Simple mode static float simple_sin_y, simple_cos_x; static byte jump = -10; // used to track loops in jump command static int waypoint_speed_gov; // Acro #if CH7_OPTION == CH7_FLIP static bool do_flip = false; #endif static boolean trim_flag; static int CH7_wp_index = 0; // Airspeed // -------- static int airspeed; // m/s * 100 // Location Errors // --------------- static long yaw_error; // how off are we pointed static long long_error, lat_error; // temp for debugging // Battery Sensors // --------------- static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter static float current_amps; static float current_total; static bool low_batt = false; // Barometer Sensor variables // -------------------------- static long abs_pressure; static long ground_pressure; static int ground_temperature; // Altitude Sensor variables // ---------------------- static byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR static long altitude_error; // meters * 100 we are off in altitude static int climb_rate; // m/s * 100 static int sonar_alt; static int old_sonar_alt; static int sonar_rate; static int baro_alt; static int old_baro_alt; static int baro_rate; // flight mode specific // -------------------- static byte yaw_mode; static byte roll_pitch_mode; static byte throttle_mode; static boolean takeoff_complete; // Flag for using take-off controls static boolean land_complete; static long old_alt; // used for managing altitude rates static int velocity_land; static byte yaw_tracking = MAV_ROI_WPNEXT; // no tracking, point at next wp, or at a target static int manual_boost; // used in adjust altitude to make changing alt faster static int angle_boost; // used in adjust altitude to make changing alt faster // Loiter management // ----------------- static long original_target_bearing; // deg * 100, used to check we are not passing the WP static long old_target_bearing; // used to track difference in angle static int loiter_total; // deg : how many times to loiter * 360 static int loiter_sum; // deg : how far we have turned around a waypoint static unsigned long loiter_time; // millis : when we started LOITER mode static unsigned loiter_time_max; // millis : how long to stay in LOITER mode // these are the values for navigation control functions // ---------------------------------------------------- static long nav_roll; // deg * 100 : target roll angle static long nav_pitch; // deg * 100 : target pitch angle static long nav_yaw; // deg * 100 : target yaw angle static long auto_yaw; // deg * 100 : target yaw angle static long nav_lat; // for error calcs static long nav_lon; // for error calcs static int nav_throttle; // 0-1000 for throttle control static unsigned long throttle_integrator; // used to integrate throttle output to predict battery life static bool invalid_throttle; // used to control when we calculate nav_throttle //static bool set_throttle_cruise_flag = false; // used to track the throttle crouse value static long command_yaw_start; // what angle were we to begin with static unsigned long command_yaw_start_time; // when did we start turning static unsigned int command_yaw_time; // how long we are turning static long command_yaw_end; // what angle are we trying to be static long command_yaw_delta; // how many degrees will we turn static int command_yaw_speed; // how fast to turn static byte command_yaw_dir; static byte command_yaw_relative; static int auto_level_counter; // Waypoints // --------- static long wp_distance; // meters - distance between plane and next waypoint static long wp_totalDistance; // meters - distance between old and next waypoint //static byte next_wp_index; // Current active command index // repeating event control // ----------------------- static byte event_id; // what to do - see defines static unsigned long event_timer; // when the event was asked for in ms static unsigned int event_delay; // how long to delay the next firing of event in millis static int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice static int event_value; // per command value, such as PWM for servos static int event_undo_value; // the value used to undo commands //static byte repeat_forever; //static byte undo_event; // counter for timing the undo // delay command // -------------- static long condition_value; // used in condition commands (eg delay, change alt, etc.) static long condition_start; //static int condition_rate; // land command // ------------ static long land_start; // when we intiated command in millis() static long original_alt; // altitide reference for start of command // 3D Location vectors // ------------------- static struct Location home; // home location static struct Location prev_WP; // last waypoint static struct Location current_loc; // current location static struct Location next_WP; // next waypoint static struct Location target_WP; // where do we want to you towards? static struct Location next_command; // command preloaded static struct Location guided_WP; // guided mode waypoint static long target_altitude; // used for static boolean home_is_set; // Flag for if we have g_gps lock and have set the home location // IMU variables // ------------- static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm) // Performance monitoring // ---------------------- static long perf_mon_timer; //static float imu_health; // Metric based on accel gain deweighting static int gps_fix_count; static byte gps_watchdog; // System Timers // -------------- static unsigned long fast_loopTimer; // Time in miliseconds of main control loop static byte medium_loopCounter; // Counters for branching from main control loop to slower loops static unsigned long fiftyhz_loopTimer; static byte slow_loopCounter; static int superslow_loopCounter; static byte simple_timer; // for limiting the execution of flight mode thingys static float dTnav; // Delta Time in milliseconds for navigation computations static unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav static byte counter_one_herz; static bool GPS_enabled = false; static bool new_radio_frame; AP_Relay relay; //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// void setup() { memcheck_init(); init_ardupilot(); } void loop() { long timer = micros(); // We want this to execute fast // ---------------------------- if ((timer - fast_loopTimer) >= 4000) { //PORTK |= B00010000; G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops fast_loopTimer = timer; // Execute the fast loop // --------------------- fast_loop(); } //PORTK &= B11101111; if ((timer - fiftyhz_loopTimer) >= 20000) { fiftyhz_loopTimer = timer; //PORTK |= B01000000; // reads all of the necessary trig functions for cameras, throttle, etc. update_trig(); // perform 10hz tasks medium_loop(); // Stuff to run at full 50hz, but after the loops fifty_hz_loop(); counter_one_herz++; if(counter_one_herz == 50){ super_slow_loop(); counter_one_herz = 0; } if (millis() - perf_mon_timer > 1200 /*20000*/) { if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); gps_fix_count = 0; perf_mon_timer = millis(); } //PORTK &= B10111111; } } // PORTK |= B01000000; // PORTK &= B10111111; // Main loop static void fast_loop() { // try to send any deferred messages if the serial port now has // some space available gcs_send_message(MSG_RETRY_DEFERRED); // Read radio // ---------- read_radio(); // IMU DCM Algorithm read_AHRS(); // custom code/exceptions for flight modes // --------------------------------------- update_yaw_mode(); update_roll_pitch_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); //if(motor_armed) //Log_Write_Attitude(); // agmatthews - USERHOOKS #ifdef USERHOOK_FASTLOOP USERHOOK_FASTLOOP #endif } static void medium_loop() { // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS and Compass //----------------------------------------- case 0: medium_loopCounter++; #ifdef OPTFLOW_ENABLED if(g.optflow_enabled){ optflow.read(); optflow.update_position(dcm.roll, dcm.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow // write to log if (g.log_bitmask & MASK_LOG_OPTFLOW){ Log_Write_Optflow(); } } #endif if(GPS_enabled){ update_GPS(); } //readCommands(); #if HIL_MODE != HIL_MODE_ATTITUDE if(g.compass_enabled){ compass.read(); // Read magnetometer compass.calculate(dcm.get_dcm_matrix()); // Calculate heading compass.null_offsets(dcm.get_dcm_matrix()); } #endif // auto_trim, uses an auto_level algorithm auto_trim(); // record throttle output // ------------------------------ throttle_integrator += g.rc_3.servo_out; break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; // Auto control modes: if(g_gps->new_data && g_gps->fix){ // invalidate GPS data g_gps->new_data = false; // we are not tracking I term on navigation, so this isn't needed dTnav = (float)(millis() - nav_loopTimer)/ 1000.0; nav_loopTimer = millis(); // prevent runup from bad GPS dTnav = min(dTnav, 1.0); // calculate the copter's desired bearing and WP distance // ------------------------------------------------------ if(navigate()){ // control mode specific updates // ----------------------------- update_navigation(); if (g.log_bitmask & MASK_LOG_NTUN) Log_Write_Nav_Tuning(); } }else{ g_gps->new_data = false; } break; // command processing //------------------- case 2: medium_loopCounter++; // Read altitude from sensors // -------------------------- update_altitude(); // invalidate the throttle hold value // ---------------------------------- invalid_throttle = true; break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; // perform next command // -------------------- if(control_mode == AUTO){ update_commands(); } #if HIL_MODE != HIL_MODE_ATTITUDE if(motor_armed){ if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_CTUN) Log_Write_Control_Tuning(); } #endif // send all requested output streams with rates requested // between 5 and 45 Hz gcs_data_stream_send(5,45); if (g.log_bitmask & MASK_LOG_MOTORS) Log_Write_Motors(); break; // This case controls the slow loop //--------------------------------- case 4: medium_loopCounter = 0; if (g.battery_monitoring != 0){ read_battery(); } // Accel trims = hold > 2 seconds // Throttle cruise = switch less than 1 second // -------------------------------------------- read_trim_switch(); // Check for engine arming // ----------------------- arm_motors(); // Do an extra baro read // --------------------- #if HIL_MODE != HIL_MODE_ATTITUDE barometer.Read(); #endif slow_loop(); break; default: // this is just a catch all // ------------------------ medium_loopCounter = 0; break; } // agmatthews - USERHOOKS #ifdef USERHOOK_MEDIUMLOOP USERHOOK_MEDIUMLOOP #endif } // stuff that happens at 50 hz // --------------------------- static void fifty_hz_loop() { // moved to slower loop // -------------------- update_throttle_mode(); // Read Sonar // ---------- if(g.sonar_enabled){ sonar_alt = sonar.read(); } // agmatthews - USERHOOKS #ifdef USERHOOK_50HZLOOP USERHOOK_50HZLOOP #endif #if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME // HIL for a copter needs very fast update of the servo values gcs_send_message(MSG_RADIO_OUT); #endif camera_stabilization(); # if HIL_MODE == HIL_MODE_DISABLED if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Log_Write_Attitude(); if (g.log_bitmask & MASK_LOG_RAW) Log_Write_Raw(); #endif // kick the GCS to process uplink data gcs_update(); gcs_data_stream_send(45,1000); #if FRAME_CONFIG == TRI_FRAME // servo Yaw g.rc_4.calc_pwm(); APM_RC.OutputCh(CH_7, g.rc_4.radio_out); #endif } static void slow_loop() { // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter){ case 0: slow_loopCounter++; superslow_loopCounter++; if(superslow_loopCounter > 1200){ #if HIL_MODE != HIL_MODE_ATTITUDE if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled){ compass.save_offsets(); superslow_loopCounter = 0; } #endif } break; case 1: slow_loopCounter++; // Read 3-position switch on radio // ------------------------------- read_control_switch(); // Read main battery voltage if hooked up - does not read the 5v from radio // ------------------------------------------------------------------------ //#if BATTERY_EVENT == 1 // read_battery(); //#endif #if AUTO_RESET_LOITER == 1 if(control_mode == LOITER){ //if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 1500){ // reset LOITER to current position //next_WP = current_loc; //} } #endif break; case 2: slow_loopCounter = 0; update_events(); // blink if we are armed update_lights(); // send all requested output streams with rates requested // between 1 and 5 Hz gcs_data_stream_send(1,5); if(g.radio_tuning > 0) tuning(); #if MOTOR_LEDS == 1 update_motor_leds(); #endif break; default: slow_loopCounter = 0; break; } // agmatthews - USERHOOKS #ifdef USERHOOK_SLOWLOOP USERHOOK_SLOWLOOP #endif } // 1Hz loop static void super_slow_loop() { if (g.log_bitmask & MASK_LOG_CUR) Log_Write_Current(); gcs_send_message(MSG_HEARTBEAT); // agmatthews - USERHOOKS #ifdef USERHOOK_SUPERSLOWLOOP USERHOOK_SUPERSLOWLOOP #endif } static void update_GPS(void) { g_gps->update(); update_GPS_light(); //current_loc.lng = 377697000; // Lon * 10 * *7 //current_loc.lat = -1224318000; // Lat * 10 * *7 //current_loc.alt = 100; // alt * 10 * *7 //return; if(gps_watchdog < 12){ gps_watchdog++; }else{ // we have lost GPS signal for a moment. Reduce our error to avoid flyaways // commented temporarily //nav_roll >>= 1; //nav_pitch >>= 1; } if (g_gps->new_data && g_gps->fix) { gps_watchdog = 0; // for performance // --------------- gps_fix_count++; if(ground_start_count > 1){ ground_start_count--; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { ground_start_count = 5; }else{ init_home(); ground_start_count = 0; } } current_loc.lng = g_gps->longitude; // Lon * 10 * *7 current_loc.lat = g_gps->latitude; // Lat * 10 * *7 if (g.log_bitmask & MASK_LOG_GPS){ Log_Write_GPS(); } } } void update_yaw_mode(void) { switch(yaw_mode){ case YAW_ACRO: g.rc_4.servo_out = get_rate_yaw(g.rc_4.control_in); return; break; case YAW_HOLD: // calcualte new nav_yaw offset if (control_mode <= STABILIZE){ nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, g.rc_3.control_in); }else{ nav_yaw = get_nav_yaw_offset(g.rc_4.control_in, 1); } break; case YAW_LOOK_AT_HOME: //nav_yaw updated in update_navigation() break; case YAW_AUTO: nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -20, 20); nav_yaw = wrap_360(nav_yaw); break; } // Yaw control g.rc_4.servo_out = get_stabilize_yaw(nav_yaw); //Serial.printf("4: %d\n",g.rc_4.servo_out); } void update_roll_pitch_mode(void) { #if CH7_OPTION == CH7_FLIP if (do_flip){ roll_flip(); return; } #endif int control_roll = 0, control_pitch = 0; //read_radio(); if(do_simple && new_radio_frame){ new_radio_frame = false; simple_timer++; int delta = wrap_360(dcm.yaw_sensor - initial_simple_bearing)/100; if (simple_timer == 1){ // roll simple_cos_x = sin(radians(90 - delta)); }else if (simple_timer > 2){ // pitch simple_sin_y = cos(radians(90 - delta)); simple_timer = 0; } // Rotate input by the initial bearing control_roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y; control_pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x); g.rc_1.control_in = control_roll; g.rc_2.control_in = control_pitch; } switch(roll_pitch_mode){ case ROLL_PITCH_ACRO: g.rc_1.servo_out = get_rate_roll(g.rc_1.control_in); g.rc_2.servo_out = get_rate_pitch(g.rc_2.control_in); break; case ROLL_PITCH_STABLE: g.rc_1.servo_out = get_stabilize_roll(g.rc_1.control_in); g.rc_2.servo_out = get_stabilize_pitch(g.rc_2.control_in); break; case ROLL_PITCH_AUTO: // mix in user control with Nav control control_roll = g.rc_1.control_mix(nav_roll); control_pitch = g.rc_2.control_mix(nav_pitch); g.rc_1.servo_out = get_stabilize_roll(control_roll); g.rc_2.servo_out = get_stabilize_pitch(control_pitch); break; } } // 50 hz update rate, not 250 void update_throttle_mode(void) { switch(throttle_mode){ case THROTTLE_MANUAL: if (g.rc_3.control_in > 0){ #if FRAME_CONFIG == HELI_FRAME g.rc_3.servo_out = heli_get_angle_boost(heli_get_scaled_throttle(g.rc_3.control_in)); #else angle_boost = get_angle_boost(g.rc_3.control_in); g.rc_3.servo_out = g.rc_3.control_in + angle_boost; #endif }else{ g.pi_stabilize_roll.reset_I(); g.pi_stabilize_pitch.reset_I(); g.pi_rate_roll.reset_I(); g.pi_rate_pitch.reset_I(); g.rc_3.servo_out = 0; } break; case THROTTLE_HOLD: // allow interactive changing of atitude adjust_altitude(); // fall through case THROTTLE_AUTO: // 10hz, don't run up i term if(invalid_throttle && motor_auto_armed == true){ // how far off are we altitude_error = get_altitude_error(); // get the AP throttle nav_throttle = get_nav_throttle(altitude_error);//, 250); //150 = target speed of 1.5m/s //Serial.printf("in:%d, cr:%d, NT:%d, I:%1.4f\n", g.rc_3.control_in,altitude_error, nav_throttle, g.pi_throttle.get_integrator()); // clear the new data flag invalid_throttle = false; } angle_boost = get_angle_boost(g.throttle_cruise); if(manual_boost != 0){ //remove alt_hold_velocity when implemented #if FRAME_CONFIG == HELI_FRAME g.rc_3.servo_out = heli_get_angle_boost(heli_get_scaled_throttle(g.throttle_cruise + nav_throttle + manual_boost + get_z_damping())); #else g.rc_3.servo_out = g.throttle_cruise + angle_boost + manual_boost + get_z_damping(); #endif // reset next_WP.alt next_WP.alt = max(current_loc.alt, 100); }else{ #if FRAME_CONFIG == HELI_FRAME //g.rc_3.servo_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle + get_z_damping()); g.rc_3.servo_out = heli_get_angle_boost(heli_get_scaled_throttle(g.throttle_cruise + nav_throttle + get_z_damping())); #else g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost + get_z_damping(); #endif } break; } } // called after a GPS read static void update_navigation() { // wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS // ------------------------------------------------------------------------ switch(control_mode){ case AUTO: verify_commands(); // note: wp_control is handled by commands_logic // calculates desired Yaw update_auto_yaw(); // calculates the desired Roll and Pitch update_nav_wp(); break; case GUIDED: wp_control = WP_MODE; // check if we are close to point > loiter wp_verify_byte = 0; verify_nav_wp(); if (wp_control == WP_MODE) { update_auto_yaw(); } else { set_mode(LOITER); } update_nav_wp(); break; case RTL: if((wp_distance <= g.waypoint_radius) || check_missed_wp()){ // lets just jump to Loiter Mode after RTL set_mode(LOITER); }else{ // calculates desired Yaw // XXX this is an experiment #if FRAME_CONFIG == HELI_FRAME update_auto_yaw(); #endif wp_control = WP_MODE; } // calculates the desired Roll and Pitch update_nav_wp(); break; // switch passthrough to LOITER case LOITER: case POSITION: wp_control = LOITER_MODE; // calculates the desired Roll and Pitch update_nav_wp(); break; case CIRCLE: yaw_tracking = MAV_ROI_WPNEXT; wp_control = CIRCLE_MODE; // calculates desired Yaw update_auto_yaw(); update_nav_wp(); break; } if(yaw_mode == YAW_LOOK_AT_HOME){ if(home_is_set){ //nav_yaw = point_at_home_yaw(); nav_yaw = get_bearing(¤t_loc, &home); } else { nav_yaw = 0; } } } static void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- #if HIL_MODE == HIL_MODE_SENSORS // update hil before dcm update gcs_update(); #endif dcm.update_DCM_fast(); omega = dcm.get_gyro(); } static void update_trig(void){ Vector2f yawvector; Matrix3f temp = dcm.get_dcm_matrix(); yawvector.x = temp.a.x; // sin yawvector.y = temp.b.x; // cos yawvector.normalize(); sin_pitch_y = -temp.c.x; cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x)); cos_roll_x = temp.c.z / cos_pitch_x; sin_roll_y = temp.c.y / cos_pitch_x; cos_yaw_x = yawvector.y; // 0 x = north sin_yaw_y = yawvector.x; // 1 y //flat: // 0 ° = cos_yaw: 0.00, sin_yaw: 1.00, // 90° = cos_yaw: 1.00, sin_yaw: 0.00, // 180 = cos_yaw: 0.00, sin_yaw: -1.00, // 270 = cos_yaw: -1.00, sin_yaw: 0.00, } // updated at 10hz static void update_altitude() { altitude_sensor = BARO; #if HIL_MODE == HIL_MODE_ATTITUDE current_loc.alt = g_gps->altitude - gps_base_alt; return; #else // calc the vertical accel rate int temp_alt = (barometer._offset_press - barometer.RawPress) << 1; // invert and scale baro_rate = (temp_alt - old_baro_alt) * 10; old_baro_alt = temp_alt; if(g.sonar_enabled){ // filter out offset float scale; // read barometer baro_alt = (baro_alt + read_barometer()) >> 1; // calc rate of change for Sonar sonar_rate = (sonar_alt - old_sonar_alt) * 10; old_sonar_alt = sonar_alt; if(baro_alt < 1000){ #if SONAR_TILT_CORRECTION == 1 // correct alt for angle of the sonar float temp = cos_pitch_x * cos_roll_x; temp = max(temp, 0.707); sonar_alt = (float)sonar_alt * temp; #endif scale = (sonar_alt - 400) / 200; scale = constrain(scale, 0, 1); current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale) + home.alt; climb_rate = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale; }else{ current_loc.alt = baro_alt + home.alt; climb_rate = baro_rate; } }else{ // No Sonar Case baro_alt = read_barometer(); current_loc.alt = baro_alt + home.alt; climb_rate = baro_rate; } #endif } static void adjust_altitude() { /* // old vert control if(g.rc_3.control_in <= 200){ next_WP.alt -= 1; // 1 meter per second next_WP.alt = max(next_WP.alt, (current_loc.alt - 500)); // don't go less than 4 meters below current location next_WP.alt = max(next_WP.alt, 100); // don't go less than 1 meter //manual_boost = (g.rc_3.control_in == 0) ? -20 : 0; }else if (g.rc_3.control_in > 700){ next_WP.alt += 1; // 1 meter per second next_WP.alt = min(next_WP.alt, (current_loc.alt + 500)); // don't go more than 4 meters below current location //manual_boost = (g.rc_3.control_in == 800) ? 20 : 0; }*/ if(g.rc_3.control_in <= 180){ // we remove 0 to 100 PWM from hover manual_boost = g.rc_3.control_in - 180; manual_boost = max(-120, manual_boost); g.throttle_cruise += g.pi_throttle.get_integrator(); g.pi_alt_hold.reset_I(); g.pi_throttle.reset_I(); }else if (g.rc_3.control_in >= 650){ // we add 0 to 100 PWM to hover manual_boost = g.rc_3.control_in - 650; g.throttle_cruise += g.pi_throttle.get_integrator(); g.pi_alt_hold.reset_I(); g.pi_throttle.reset_I(); }else { manual_boost = 0; } } static void tuning(){ tuning_value = (float)g.rc_6.control_in / 1000.0; switch(g.radio_tuning){ /*case CH6_STABILIZE_KP: g.rc_6.set_range(0,2000); // 0 to 8 tuning_value = (float)g.rc_6.control_in / 100.0; alt_hold_gain = tuning_value; break;*/ case CH6_STABILIZE_KP: g.rc_6.set_range(0,8000); // 0 to 8 g.pi_stabilize_roll.kP(tuning_value); g.pi_stabilize_pitch.kP(tuning_value); break; case CH6_STABILIZE_KI: g.rc_6.set_range(0,300); // 0 to .3 tuning_value = (float)g.rc_6.control_in / 1000.0; g.pi_stabilize_roll.kI(tuning_value); g.pi_stabilize_pitch.kI(tuning_value); break; case CH6_RATE_KP: g.rc_6.set_range(0,300); // 0 to .3 g.pi_rate_roll.kP(tuning_value); g.pi_rate_pitch.kP(tuning_value); break; case CH6_RATE_KI: g.rc_6.set_range(0,300); // 0 to .3 g.pi_rate_roll.kI(tuning_value); g.pi_rate_pitch.kI(tuning_value); break; case CH6_YAW_KP: g.rc_6.set_range(0,1000); g.pi_stabilize_yaw.kP(tuning_value); break; case CH6_YAW_RATE_KP: g.rc_6.set_range(0,1000); g.pi_rate_yaw.kP(tuning_value); break; case CH6_THROTTLE_KP: g.rc_6.set_range(0,1000); g.pi_throttle.kP(tuning_value); break; case CH6_TOP_BOTTOM_RATIO: g.rc_6.set_range(800,1000); // .8 to 1 g.top_bottom_ratio = tuning_value; break; case CH6_RELAY: g.rc_6.set_range(0,1000); if (g.rc_6.control_in > 525) relay.on(); if (g.rc_6.control_in < 475) relay.off(); break; case CH6_TRAVERSE_SPEED: g.rc_6.set_range(0,1000); g.waypoint_speed_max = g.rc_6.control_in; break; case CH6_LOITER_P: g.rc_6.set_range(0,1000); g.pi_loiter_lat.kP(tuning_value); g.pi_loiter_lon.kP(tuning_value); break; case CH6_NAV_P: g.rc_6.set_range(0,6000); g.pi_nav_lat.kP(tuning_value); g.pi_nav_lon.kP(tuning_value); break; #if FRAME_CONFIG == HELI_FRAME case CH6_HELI_EXTERNAL_GYRO: g.rc_6.set_range(1000,2000); g.heli_ext_gyro_gain = tuning_value * 1000; break; #endif } } static void update_nav_wp() { if(wp_control == LOITER_MODE){ // calc a pitch to the target calc_location_error(&next_WP); // use error as the desired rate towards the target calc_loiter(long_error, lat_error); // rotate pitch and roll to the copter frame of reference calc_loiter_pitch_roll(); }else if(wp_control == CIRCLE_MODE){ // check if we have missed the WP int loiter_delta = (target_bearing - old_target_bearing)/100; // reset the old value old_target_bearing = target_bearing; // wrap values if (loiter_delta > 180) loiter_delta -= 360; if (loiter_delta < -180) loiter_delta += 360; // sum the angle around the WP loiter_sum += loiter_delta; // create a virtual waypoint that circles the next_WP // Count the degrees we have circulated the WP int circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100; target_WP.lng = next_WP.lng + (g.loiter_radius * cos(radians(90 - circle_angle))); target_WP.lat = next_WP.lat + (g.loiter_radius * sin(radians(90 - circle_angle))); // calc the lat and long error to the target calc_location_error(&target_WP); // use error as the desired rate towards the target // nav_lon, nav_lat is calculated calc_loiter(long_error, lat_error); // rotate pitch and roll to the copter frame of reference calc_loiter_pitch_roll(); } else { // use error as the desired rate towards the target calc_nav_rate(g.waypoint_speed_max); // rotate pitch and roll to the copter frame of reference calc_nav_pitch_roll(); } } static void update_auto_yaw() { // this tracks a location so the copter is always pointing towards it. if(yaw_tracking == MAV_ROI_LOCATION){ auto_yaw = get_bearing(¤t_loc, &target_WP); }else if(yaw_tracking == MAV_ROI_WPNEXT){ auto_yaw = target_bearing; } // MAV_ROI_NONE = basic Yaw hold }