/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * DataFlash_APM1.cpp - DataFlash log library for AT45DB161 * Code by Jordi Muñoz and Jose Julio. DIYDrones.com * This code works only on ATMega2560. It uses Serial port 3 in SPI MSPI mdoe. * * Dataflash library for AT45DB161D flash memory * Memory organization : 4096 pages of 512 bytes or 528 bytes * * Maximun write bandwidth : 512 bytes in 14ms * This code is written so the master never has to wait to write the data on the eeprom * * Methods: * Init() : Library initialization (SPI initialization) * StartWrite(page) : Start a write session. page=start page. * StartRead(page) : Start a read on (page) * GetWritePage() : Returns the last page written to * GetPage() : Returns the last page read * * Properties: * */ #include #include "DataFlash_APM2.h" extern const AP_HAL::HAL& hal; //#define ENABLE_FASTSERIAL_DEBUG #ifdef ENABLE_FASTSERIAL_DEBUG #define serialDebug(fmt, args...) do {hal.console->printf_P(PSTR( __FUNCTION__ ":%d:" fmt "\n"), __LINE__, ##args); } while(0) #else # define serialDebug(fmt, args...) #endif // flash size #define DF_LAST_PAGE 4096 #define DF_RESET 31 // RESET (PC6) // AT45DB161D Commands (from Datasheet) #define DF_TRANSFER_PAGE_TO_BUFFER_1 0x53 #define DF_TRANSFER_PAGE_TO_BUFFER_2 0x55 #define DF_STATUS_REGISTER_READ 0xD7 #define DF_READ_MANUFACTURER_AND_DEVICE_ID 0x9F #define DF_PAGE_READ 0xD2 #define DF_BUFFER_1_READ 0xD4 #define DF_BUFFER_2_READ 0xD6 #define DF_BUFFER_1_WRITE 0x84 #define DF_BUFFER_2_WRITE 0x87 #define DF_BUFFER_1_TO_PAGE_WITH_ERASE 0x83 #define DF_BUFFER_2_TO_PAGE_WITH_ERASE 0x86 #define DF_PAGE_ERASE 0x81 #define DF_BLOCK_ERASE 0x50 #define DF_SECTOR_ERASE 0x7C #define DF_CHIP_ERASE_0 0xC7 #define DF_CHIP_ERASE_1 0x94 #define DF_CHIP_ERASE_2 0x80 #define DF_CHIP_ERASE_3 0x9A /* try to take a semaphore safely from both in a timer and outside */ bool DataFlash_APM1::_sem_take(uint8_t timeout) { if (hal.scheduler->in_timerprocess()) { return _spi_sem->take_nonblocking(); } return _spi_sem->take(timeout); } // Public Methods ////////////////////////////////////////////////////////////// void DataFlash_APM1::Init(const struct LogStructure *structure, uint8_t num_types) { DataFlash_Backend::Init(structure, num_types); // init to zero df_NumPages = 0; hal.gpio->pinMode(DF_RESET,HAL_GPIO_OUTPUT); // Reset the chip hal.gpio->write(DF_RESET,0); hal.scheduler->delay(1); hal.gpio->write(DF_RESET,1); _spi = hal.spi->device(AP_HAL::SPIDevice_Dataflash); if (_spi == NULL) { hal.scheduler->panic( PSTR("PANIC: DataFlash SPIDeviceDriver not found")); return; /* never reached */ } _spi_sem = _spi->get_semaphore(); if (_spi_sem == NULL) { hal.scheduler->panic( PSTR("PANIC: DataFlash SPIDeviceDriver semaphore is null")); return; /* never reached */ } // get page size: 512 or 528 (by default: 528) df_PageSize = PageSize(); // the last page is reserved for config information df_NumPages = DF_LAST_PAGE - 1; } // This function is mainly to test the device void DataFlash_APM1::ReadManufacturerID() { if (!_sem_take(5)) return; // activate dataflash command decoder _spi->cs_assert(); // Read manufacturer and ID command... _spi->transfer(DF_READ_MANUFACTURER_AND_DEVICE_ID); df_manufacturer = _spi->transfer(0xff); df_device = _spi->transfer(0xff); df_device = (df_device << 8) | _spi->transfer(0xff); _spi->transfer(0xff); // release SPI bus for use by other sensors _spi->cs_release(); _spi_sem->give(); } // This function return 1 if Card is inserted on SD slot bool DataFlash_APM1::CardInserted() { return true; } // Read the status register // Assumes _spi_sem handled by caller uint8_t DataFlash_APM1::ReadStatusReg() { uint8_t tmp; // activate dataflash command decoder _spi->cs_assert(); // Read status command _spi->transfer(DF_STATUS_REGISTER_READ); tmp = _spi->transfer(0x00); // We only want to extract the READY/BUSY bit // release SPI bus for use by other sensors _spi->cs_release(); return tmp; } // Read the status of the DataFlash // Assumes _spi_sem handled by caller. inline uint8_t DataFlash_APM1::ReadStatus() { return(ReadStatusReg()&0x80); // We only want to extract the READY/BUSY bit } inline uint16_t DataFlash_APM1::PageSize() { if (!_sem_take(5)) return 0; uint16_t ret = 528-((ReadStatusReg()&0x01) << 4); // if first bit 1 trhen 512 else 528 bytes _spi_sem->give(); return ret; } // Wait until DataFlash is in ready state... // Assumes _spi_sem handled by caller. void DataFlash_APM1::WaitReady() { while(!ReadStatus()) ; } void DataFlash_APM1::PageToBuffer(uint8_t BufferNum, uint16_t PageAdr) { if (!_sem_take(1)) return; // activate dataflash command decoder _spi->cs_assert(); uint8_t cmd[4]; cmd[0] = BufferNum?DF_TRANSFER_PAGE_TO_BUFFER_2:DF_TRANSFER_PAGE_TO_BUFFER_1; if(df_PageSize==512) { cmd[1] = (uint8_t)(PageAdr >> 7); cmd[2] = (uint8_t)(PageAdr << 1); }else{ cmd[1] = (uint8_t)(PageAdr >> 6); cmd[2] = (uint8_t)(PageAdr << 2); } cmd[3] = 0; _spi->transfer(cmd, sizeof(cmd)); //initiate the transfer _spi->cs_release(); while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high _spi_sem->give(); } void DataFlash_APM1::BufferToPage (uint8_t BufferNum, uint16_t PageAdr, uint8_t wait) { if (!_sem_take(1)) return; // activate dataflash command decoder _spi->cs_assert(); uint8_t cmd[4]; cmd[0] = BufferNum?DF_BUFFER_2_TO_PAGE_WITH_ERASE:DF_BUFFER_1_TO_PAGE_WITH_ERASE; if(df_PageSize==512) { cmd[1] = (uint8_t)(PageAdr >> 7); cmd[2] = (uint8_t)(PageAdr << 1); }else{ cmd[1] = (uint8_t)(PageAdr >> 6); cmd[2] = (uint8_t)(PageAdr << 2); } cmd[3] = 0; _spi->transfer(cmd, sizeof(cmd)); //initiate the transfer _spi->cs_release(); // Check if we need to wait to write the buffer to memory or we can continue... if (wait) while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high _spi_sem->give(); } void DataFlash_APM1::BlockWrite (uint8_t BufferNum, uint16_t IntPageAdr, const void *pHeader, uint8_t hdr_size, const void *pBuffer, uint16_t size) { if (!_sem_take(1)) return; // activate dataflash command decoder _spi->cs_assert(); uint8_t cmd[4]; cmd[0] = BufferNum?DF_BUFFER_2_WRITE:DF_BUFFER_1_WRITE; cmd[1] = 0; cmd[2] = (uint8_t)(IntPageAdr>>8); cmd[3] = (uint8_t)(IntPageAdr); _spi->transfer(cmd, sizeof(cmd)); // transfer header, if any if (hdr_size != 0) { _spi->transfer((const uint8_t *)pHeader, hdr_size); } // transfer data _spi->transfer((const uint8_t *)pBuffer, size); // release SPI bus for use by other sensors _spi->cs_release(); _spi_sem->give(); } bool DataFlash_APM1::BlockRead(uint8_t BufferNum, uint16_t IntPageAdr, void *pBuffer, uint16_t size) { if (!_sem_take(1)) return false; // activate dataflash command decoder _spi->cs_assert(); uint8_t cmd[5]; cmd[0] = BufferNum?DF_BUFFER_2_READ:DF_BUFFER_1_READ; cmd[1] = 0; cmd[2] = (uint8_t)(IntPageAdr>>8); cmd[3] = (uint8_t)(IntPageAdr); cmd[4] = 0; _spi->transfer(cmd, sizeof(cmd)); uint8_t *pData = (uint8_t *)pBuffer; while (size--) { *pData++ = _spi->transfer(0x00); } // release SPI bus for use by other sensors _spi->cs_release(); _spi_sem->give(); return true; } // *** END OF INTERNAL FUNCTIONS *** void DataFlash_APM1::PageErase (uint16_t PageAdr) { if (!_sem_take(1)) return; // activate dataflash command decoder _spi->cs_assert(); // Send page erase command _spi->transfer(DF_PAGE_ERASE); if(df_PageSize==512) { _spi->transfer((uint8_t)(PageAdr >> 7)); _spi->transfer((uint8_t)(PageAdr << 1)); }else{ _spi->transfer((uint8_t)(PageAdr >> 6)); _spi->transfer((uint8_t)(PageAdr << 2)); } _spi->transfer(0x00); //initiate flash page erase _spi->cs_release(); _spi_sem->give(); while(!ReadStatus()) ; } void DataFlash_APM1::BlockErase (uint16_t BlockAdr) { if (!_sem_take(1)) return; // activate dataflash command decoder _spi->cs_assert(); // Send block erase command _spi->transfer(DF_BLOCK_ERASE); /* if (df_PageSize==512) { _spi->transfer((uint8_t)(BlockAdr >> 3)); _spi->transfer((uint8_t)(BlockAdr << 5)); } else { _spi->transfer((uint8_t)(BlockAdr >> 4)); _spi->transfer((uint8_t)(BlockAdr << 4)); }*/ if (df_PageSize==512) { _spi->transfer((uint8_t)(BlockAdr >> 4)); _spi->transfer((uint8_t)(BlockAdr << 4)); } else { _spi->transfer((uint8_t)(BlockAdr >> 3)); _spi->transfer((uint8_t)(BlockAdr << 5)); } _spi->transfer(0x00); //serialDebug("BL Erase, %d\n", BlockAdr); //initiate flash page erase _spi->cs_release(); while(!ReadStatus()) ; _spi_sem->give(); } void DataFlash_APM1::ChipErase() { if (!_sem_take(5)) return; // activate dataflash command decoder _spi->cs_assert(); // opcodes for chip erase _spi->transfer(DF_CHIP_ERASE_0); _spi->transfer(DF_CHIP_ERASE_1); _spi->transfer(DF_CHIP_ERASE_2); _spi->transfer(DF_CHIP_ERASE_3); //initiate flash page erase _spi->cs_release(); while(!ReadStatus()) { hal.scheduler->delay(6); } _spi_sem->give(); }