import math import os import random import re import sys import time from math import acos, atan2, cos, pi, sqrt from subprocess import PIPE, Popen, call, check_call import pexpect from rotmat import Matrix3, Vector3 def m2ft(x): """Meters to feet.""" return float(x) / 0.3048 def ft2m(x): """Feet to meters.""" return float(x) * 0.3048 def kt2mps(x): return x * 0.514444444 def mps2kt(x): return x / 0.514444444 def topdir(): """Return top of git tree where autotest is running from.""" d = os.path.dirname(os.path.realpath(__file__)) assert(os.path.basename(d) == 'pysim') d = os.path.dirname(d) assert(os.path.basename(d) == 'autotest') d = os.path.dirname(d) assert(os.path.basename(d) == 'Tools') d = os.path.dirname(d) return d def reltopdir(path): """Return a path relative to topdir().""" return os.path.normpath(os.path.join(topdir(), path)) def run_cmd(cmd, directory=".", show=True, output=False, checkfail=True): """Run a shell command.""" shell = False if not isinstance(cmd, list): cmd = [cmd] shell = True if show: print("Running: (%s) in (%s)" % (cmd_as_shell(cmd), directory,)) if output: return Popen(cmd, shell=shell, stdout=PIPE, cwd=directory).communicate()[0] elif checkfail: return check_call(cmd, shell=shell, cwd=directory) else: return call(cmd, shell=shell, cwd=directory) def rmfile(path): """Remove a file if it exists.""" try: os.unlink(path) except Exception: pass def deltree(path): """Delete a tree of files.""" run_cmd('rm -rf %s' % path) def relwaf(): return "./modules/waf/waf-light" def waf_configure(board, j=None, debug=False): cmd_configure = [relwaf(), "configure", "--board", board] if debug: cmd_configure.append('--debug') if j is not None: cmd_configure.extend(['-j', str(j)]) run_cmd(cmd_configure, directory=topdir(), checkfail=True) def waf_clean(): run_cmd([relwaf(), "clean"], directory=topdir(), checkfail=True) def build_SITL(build_target, j=None, debug=False, board='sitl'): """Build desktop SITL.""" # first configure waf_configure(board, j=j, debug=debug) # then clean waf_clean() # then build cmd_make = [relwaf(), "build", "--target", build_target] if j is not None: cmd_make.extend(['-j', str(j)]) run_cmd(cmd_make, directory=topdir(), checkfail=True, show=True) return True def build_examples(board, j=None, debug=False, clean=False): # first configure waf_configure(board, j=j, debug=debug) # then clean if clean: waf_clean() # then build cmd_make = [relwaf(), "examples"] run_cmd(cmd_make, directory=topdir(), checkfail=True, show=True) return True # list of pexpect children to close on exit close_list = [] def pexpect_autoclose(p): """Mark for autoclosing.""" global close_list close_list.append(p) def pexpect_close(p): """Close a pexpect child.""" global close_list try: p.close() except Exception: pass try: p.close(force=True) except Exception: pass if p in close_list: close_list.remove(p) def pexpect_close_all(): """Close all pexpect children.""" global close_list for p in close_list[:]: pexpect_close(p) def pexpect_drain(p): """Drain any pending input.""" import pexpect try: p.read_nonblocking(1000, timeout=0) except Exception: pass def cmd_as_shell(cmd): return (" ".join(['"%s"' % x for x in cmd])) def make_safe_filename(text): """Return a version of text safe for use as a filename.""" r = re.compile("([^a-zA-Z0-9_.+-])") text.replace('/', '-') filename = r.sub(lambda m: "%" + str(hex(ord(str(m.group(1))))).upper(), text) return filename class SITL(pexpect.spawn): def __init__(self, binary, valgrind=False, gdb=False, wipe=False, synthetic_clock=True, home=None, model=None, speedup=1, defaults_file=None): self.binary = binary self.model = model cmd = [] if valgrind and os.path.exists('/usr/bin/valgrind'): cmd.extend(['valgrind', '-q', '--log-file=%s' % self.valgrind_log_filepath()]) if gdb: f = open("/tmp/x.gdb", "w") f.write("r\n") f.close() cmd.extend(['xterm', '-e', 'gdb', '-x', '/tmp/x.gdb', '--args']) cmd.append(binary) if wipe: cmd.append('-w') if synthetic_clock: cmd.append('-S') if home is not None: cmd.extend(['--home', home]) if model is not None: cmd.extend(['--model', model]) if speedup != 1: cmd.extend(['--speedup', str(speedup)]) if defaults_file is not None: cmd.extend(['--defaults', defaults_file]) print("Running: %s" % cmd_as_shell(cmd)) first = cmd[0] rest = cmd[1:] super(SITL, self).__init__(first, rest, logfile=sys.stdout, timeout=5) delaybeforesend = 0 pexpect_autoclose(self) # give time for parameters to properly setup time.sleep(3) if gdb: # if we run GDB we do so in an xterm. "Waiting for # connection" is never going to appear on xterm's output. # ... so let's give it another magic second. time.sleep(1) # TODO: have a SITL-compiled ardupilot able to have its # console on an output fd. else: self.expect('Waiting for connection', timeout=300) def valgrind_log_filepath(self): return make_safe_filename('%s-%s-valgrind.log' % (os.path.basename(self.binary), self.model,)) def start_SITL(binary, **kwargs): """Launch a SITL instance.""" return SITL(binary, **kwargs) def start_MAVProxy_SITL(atype, aircraft=None, setup=False, master='tcp:127.0.0.1:5760', options=None, logfile=sys.stdout): """Launch mavproxy connected to a SITL instance.""" import pexpect global close_list MAVPROXY = os.getenv('MAVPROXY_CMD', 'mavproxy.py') cmd = MAVPROXY + ' --master=%s --out=127.0.0.1:14550' % master if setup: cmd += ' --setup' if aircraft is None: aircraft = 'test.%s' % atype cmd += ' --aircraft=%s' % aircraft if options is not None: cmd += ' ' + options ret = pexpect.spawn(cmd, logfile=logfile, timeout=60) ret.delaybeforesend = 0 pexpect_autoclose(ret) return ret def expect_setup_callback(e, callback): """Setup a callback that is called once a second while waiting for patterns.""" import pexpect def _expect_callback(pattern, timeout=e.timeout): tstart = time.time() while time.time() < tstart + timeout: try: ret = e.expect_saved(pattern, timeout=1) return ret except pexpect.TIMEOUT: e.expect_user_callback(e) pass print("Timed out looking for %s" % pattern) raise pexpect.TIMEOUT(timeout) e.expect_user_callback = callback e.expect_saved = e.expect e.expect = _expect_callback def mkdir_p(directory): """Like mkdir -p .""" if not directory: return if directory.endswith("/"): mkdir_p(directory[:-1]) return if os.path.isdir(directory): return mkdir_p(os.path.dirname(directory)) os.mkdir(directory) def loadfile(fname): """Load a file as a string.""" f = open(fname, mode='r') r = f.read() f.close() return r def lock_file(fname): """Lock a file.""" import fcntl f = open(fname, mode='w') try: fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB) except Exception: return None return f def check_parent(parent_pid=None): """Check our parent process is still alive.""" if parent_pid is None: try: parent_pid = os.getppid() except Exception: pass if parent_pid is None: return try: os.kill(parent_pid, 0) except Exception: print("Parent had finished - exiting") sys.exit(1) def EarthRatesToBodyRates(dcm, earth_rates): """Convert the angular velocities from earth frame to body frame. Thanks to James Goppert for the formula all inputs and outputs are in radians returns a gyro vector in body frame, in rad/s . """ from math import sin, cos (phi, theta, psi) = dcm.to_euler() phiDot = earth_rates.x thetaDot = earth_rates.y psiDot = earth_rates.z p = phiDot - psiDot * sin(theta) q = cos(phi) * thetaDot + sin(phi) * psiDot * cos(theta) r = cos(phi) * psiDot * cos(theta) - sin(phi) * thetaDot return Vector3(p, q, r) def BodyRatesToEarthRates(dcm, gyro): """Convert the angular velocities from body frame to earth frame. all inputs and outputs are in radians/s returns a earth rate vector. """ from math import sin, cos, tan, fabs p = gyro.x q = gyro.y r = gyro.z (phi, theta, psi) = dcm.to_euler() phiDot = p + tan(theta) * (q * sin(phi) + r * cos(phi)) thetaDot = q * cos(phi) - r * sin(phi) if fabs(cos(theta)) < 1.0e-20: theta += 1.0e-10 psiDot = (q * sin(phi) + r * cos(phi)) / cos(theta) return Vector3(phiDot, thetaDot, psiDot) radius_of_earth = 6378100.0 # in meters def gps_newpos(lat, lon, bearing, distance): """Extrapolate latitude/longitude given a heading and distance thanks to http://www.movable-type.co.uk/scripts/latlong.html . """ from math import sin, asin, cos, atan2, radians, degrees lat1 = radians(lat) lon1 = radians(lon) brng = radians(bearing) dr = distance / radius_of_earth lat2 = asin(sin(lat1) * cos(dr) + cos(lat1) * sin(dr) * cos(brng)) lon2 = lon1 + atan2(sin(brng) * sin(dr) * cos(lat1), cos(dr) - sin(lat1) * sin(lat2)) return (degrees(lat2), degrees(lon2)) def gps_distance(lat1, lon1, lat2, lon2): """Return distance between two points in meters, coordinates are in degrees thanks to http://www.movable-type.co.uk/scripts/latlong.html .""" lat1 = math.radians(lat1) lat2 = math.radians(lat2) lon1 = math.radians(lon1) lon2 = math.radians(lon2) dLat = lat2 - lat1 dLon = lon2 - lon1 a = math.sin(0.5 * dLat)**2 + math.sin(0.5 * dLon)**2 * math.cos(lat1) * math.cos(lat2) c = 2.0 * math.atan2(math.sqrt(a), math.sqrt(1.0 - a)) return radius_of_earth * c def gps_bearing(lat1, lon1, lat2, lon2): """Return bearing between two points in degrees, in range 0-360 thanks to http://www.movable-type.co.uk/scripts/latlong.html .""" lat1 = math.radians(lat1) lat2 = math.radians(lat2) lon1 = math.radians(lon1) lon2 = math.radians(lon2) dLon = lon2 - lon1 y = math.sin(dLon) * math.cos(lat2) x = math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(dLon) bearing = math.degrees(math.atan2(y, x)) if bearing < 0: bearing += 360.0 return bearing class Wind(object): """A wind generation object.""" def __init__(self, windstring, cross_section=0.1): a = windstring.split(',') if len(a) != 3: raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring) self.speed = float(a[0]) # m/s self.direction = float(a[1]) # direction the wind is going in self.turbulance = float(a[2]) # turbulance factor (standard deviation) # the cross-section of the aircraft to wind. This is multiplied by the # difference in the wind and the velocity of the aircraft to give the acceleration self.cross_section = cross_section # the time constant for the turbulance - the average period of the # changes over time self.turbulance_time_constant = 5.0 # wind time record self.tlast = time.time() # initial turbulance multiplier self.turbulance_mul = 1.0 def current(self, deltat=None): """Return current wind speed and direction as a tuple speed is in m/s, direction in degrees.""" if deltat is None: tnow = time.time() deltat = tnow - self.tlast self.tlast = tnow # update turbulance random walk w_delta = math.sqrt(deltat) * (1.0 - random.gauss(1.0, self.turbulance)) w_delta -= (self.turbulance_mul - 1.0) * (deltat / self.turbulance_time_constant) self.turbulance_mul += w_delta speed = self.speed * math.fabs(self.turbulance_mul) return (speed, self.direction) # Calculate drag. def drag(self, velocity, deltat=None, testing=None): """Return current wind force in Earth frame. The velocity parameter is a Vector3 of the current velocity of the aircraft in earth frame, m/s .""" from math import radians # (m/s, degrees) : wind vector as a magnitude and angle. (speed, direction) = self.current(deltat=deltat) # speed = self.speed # direction = self.direction # Get the wind vector. w = toVec(speed, radians(direction)) obj_speed = velocity.length() # Compute the angle between the object vector and wind vector by taking # the dot product and dividing by the magnitudes. d = w.length() * obj_speed if d == 0: alpha = 0 else: alpha = acos((w * velocity) / d) # Get the relative wind speed and angle from the object. Note that the # relative wind speed includes the velocity of the object; i.e., there # is a headwind equivalent to the object's speed even if there is no # absolute wind. (rel_speed, beta) = apparent_wind(speed, obj_speed, alpha) # Return the vector of the relative wind, relative to the coordinate # system. relWindVec = toVec(rel_speed, beta + atan2(velocity.y, velocity.x)) # Combine them to get the acceleration vector. return Vector3(acc(relWindVec.x, drag_force(self, relWindVec.x)), acc(relWindVec.y, drag_force(self, relWindVec.y)), 0) def apparent_wind(wind_sp, obj_speed, alpha): """http://en.wikipedia.org/wiki/Apparent_wind Returns apparent wind speed and angle of apparent wind. Alpha is the angle between the object and the true wind. alpha of 0 rads is a headwind; pi a tailwind. Speeds should always be positive.""" delta = wind_sp * cos(alpha) x = wind_sp**2 + obj_speed**2 + 2 * obj_speed * delta rel_speed = sqrt(x) if rel_speed == 0: beta = pi else: beta = acos((delta + obj_speed) / rel_speed) return (rel_speed, beta) def drag_force(wind, sp): """See http://en.wikipedia.org/wiki/Drag_equation Drag equation is F(a) = cl * p/2 * v^2 * a, where cl : drag coefficient (let's assume it's low, .e.g., 0.2), p : density of air (assume about 1 kg/m^3, the density just over 1500m elevation), v : relative speed of wind (to the body), a : area acted on (this is captured by the cross_section parameter). So then we have F(a) = 0.2 * 1/2 * v^2 * cross_section = 0.1 * v^2 * cross_section.""" return (sp**2.0) * 0.1 * wind.cross_section def acc(val, mag): """ Function to make the force vector. relWindVec is the direction the apparent wind comes *from*. We want to compute the accleration vector in the direction the wind blows to.""" if val == 0: return mag else: return (val / abs(val)) * (0 - mag) def toVec(magnitude, angle): """Converts a magnitude and angle (radians) to a vector in the xy plane.""" v = Vector3(magnitude, 0, 0) m = Matrix3() m.from_euler(0, 0, angle) return m.transposed() * v def constrain(value, minv, maxv): """Constrain a value to a range.""" if value < minv: value = minv if value > maxv: value = maxv return value if __name__ == "__main__": import doctest doctest.testmod()