/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsTri.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include #include "AP_MotorsTri.h" extern const AP_HAL::HAL& hal; // init void AP_MotorsTri::init(motor_frame_class frame_class, motor_frame_type frame_type) { add_motor_num(AP_MOTORS_MOT_1); add_motor_num(AP_MOTORS_MOT_2); add_motor_num(AP_MOTORS_MOT_4); // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the ESCs can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_1] = true; motor_enabled[AP_MOTORS_MOT_2] = true; motor_enabled[AP_MOTORS_MOT_4] = true; // find the yaw servo _yaw_servo = SRV_Channels::get_channel_for(SRV_Channel::k_motor7, AP_MOTORS_CH_TRI_YAW); if (!_yaw_servo) { gcs().send_text(MAV_SEVERITY_ERROR, "MotorsTri: unable to setup yaw channel"); // don't set initialised_ok return; } // allow mapping of motor7 add_motor_num(AP_MOTORS_CH_TRI_YAW); // record successful initialisation if what we setup was the desired frame_class _flags.initialised_ok = (frame_class == MOTOR_FRAME_TRI); } // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void AP_MotorsTri::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) { _flags.initialised_ok = (frame_class == MOTOR_FRAME_TRI); } // set update rate to motors - a value in hertz void AP_MotorsTri::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the 3 motors (but not the servo on channel 7) uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_4; rc_set_freq(mask, _speed_hz); } void AP_MotorsTri::output_to_motors() { switch (_spool_mode) { case SHUT_DOWN: // sends minimum values out to the motors rc_write(AP_MOTORS_MOT_1, get_pwm_output_min()); rc_write(AP_MOTORS_MOT_2, get_pwm_output_min()); rc_write(AP_MOTORS_MOT_4, get_pwm_output_min()); rc_write(AP_MOTORS_CH_TRI_YAW, _yaw_servo->get_trim()); break; case SPIN_WHEN_ARMED: // sends output to motors when armed but not flying rc_write(AP_MOTORS_MOT_1, calc_spin_up_to_pwm()); rc_write(AP_MOTORS_MOT_2, calc_spin_up_to_pwm()); rc_write(AP_MOTORS_MOT_4, calc_spin_up_to_pwm()); rc_write(AP_MOTORS_CH_TRI_YAW, _yaw_servo->get_trim()); break; case SPOOL_UP: case THROTTLE_UNLIMITED: case SPOOL_DOWN: // set motor output based on thrust requests rc_write(AP_MOTORS_MOT_1, calc_thrust_to_pwm(_thrust_right)); rc_write(AP_MOTORS_MOT_2, calc_thrust_to_pwm(_thrust_left)); rc_write(AP_MOTORS_MOT_4, calc_thrust_to_pwm(_thrust_rear)); rc_write(AP_MOTORS_CH_TRI_YAW, calc_yaw_radio_output(_pivot_angle, radians(_yaw_servo_angle_max_deg))); break; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsTri::get_motor_mask() { // tri copter uses channels 1,2,4 and 7 uint16_t motor_mask = (1U << AP_MOTORS_MOT_1) | (1U << AP_MOTORS_MOT_2) | (1U << AP_MOTORS_MOT_4) | (1U << AP_MOTORS_CH_TRI_YAW); uint16_t mask = rc_map_mask(motor_mask); // add parent's mask mask |= AP_MotorsMulticopter::get_motor_mask(); return mask; } // output_armed - sends commands to the motors // includes new scaling stability patch void AP_MotorsTri::output_armed_stabilizing() { float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0 float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float rpy_low = 0.0f; // lowest motor value float rpy_high = 0.0f; // highest motor value float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy // sanity check YAW_SV_ANGLE parameter value to avoid divide by zero _yaw_servo_angle_max_deg = constrain_float(_yaw_servo_angle_max_deg, AP_MOTORS_TRI_SERVO_RANGE_DEG_MIN, AP_MOTORS_TRI_SERVO_RANGE_DEG_MAX); // apply voltage and air pressure compensation const float compensation_gain = get_compensation_gain(); roll_thrust = _roll_in * compensation_gain; pitch_thrust = _pitch_in * compensation_gain; yaw_thrust = _yaw_in * compensation_gain * sinf(radians(_yaw_servo_angle_max_deg)); // we scale this so a thrust request of 1.0f will ask for full servo deflection at full rear throttle throttle_thrust = get_throttle() * compensation_gain; throttle_avg_max = _throttle_avg_max * compensation_gain; // calculate angle of yaw pivot _pivot_angle = safe_asin(yaw_thrust); if (fabsf(_pivot_angle) > radians(_yaw_servo_angle_max_deg)) { limit.yaw = true; _pivot_angle = constrain_float(_pivot_angle, -radians(_yaw_servo_angle_max_deg), radians(_yaw_servo_angle_max_deg)); } float pivot_thrust_max = cosf(_pivot_angle); float thrust_max = 1.0f; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max); // The following mix may be offer less coupling between axis but needs testing //_thrust_right = roll_thrust * -0.5f + pitch_thrust * 1.0f; //_thrust_left = roll_thrust * 0.5f + pitch_thrust * 1.0f; //_thrust_rear = 0; _thrust_right = roll_thrust * -0.5f + pitch_thrust * 0.5f; _thrust_left = roll_thrust * 0.5f + pitch_thrust * 0.5f; _thrust_rear = pitch_thrust * -0.5f; // calculate roll and pitch for each motor // set rpy_low and rpy_high to the lowest and highest values of the motors // record lowest roll pitch command rpy_low = MIN(_thrust_right,_thrust_left); rpy_high = MAX(_thrust_right,_thrust_left); if (rpy_low > _thrust_rear){ rpy_low = _thrust_rear; } // check to see if the rear motor will reach maximum thrust before the front two motors if ((1.0f - rpy_high) > (pivot_thrust_max - _thrust_rear)){ thrust_max = pivot_thrust_max; rpy_high = _thrust_rear; } // calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of: // 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible room margin above the highest motor and below the lowest // 2. the higher of: // a) the pilot's throttle input // b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle // Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this. // Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise. // We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control) // We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it // check everything fits throttle_thrust_best_rpy = MIN(0.5f*thrust_max - (rpy_low+rpy_high)/2.0, throttle_avg_max); if(is_zero(rpy_low)){ rpy_scale = 1.0f; } else { rpy_scale = constrain_float(-throttle_thrust_best_rpy/rpy_low, 0.0f, 1.0f); } // calculate how close the motors can come to the desired throttle thr_adj = throttle_thrust - throttle_thrust_best_rpy; if(rpy_scale < 1.0f){ // Full range is being used by roll, pitch, and yaw. limit.roll_pitch = true; if (thr_adj > 0.0f){ limit.throttle_upper = true; } thr_adj = 0.0f; }else{ if(thr_adj < -(throttle_thrust_best_rpy+rpy_low)){ // Throttle can't be reduced to desired value thr_adj = -(throttle_thrust_best_rpy+rpy_low); }else if(thr_adj > thrust_max - (throttle_thrust_best_rpy+rpy_high)){ // Throttle can't be increased to desired value thr_adj = thrust_max - (throttle_thrust_best_rpy+rpy_high); limit.throttle_upper = true; } } // add scaled roll, pitch, constrained yaw and throttle for each motor _thrust_right = throttle_thrust_best_rpy+thr_adj + rpy_scale*_thrust_right; _thrust_left = throttle_thrust_best_rpy+thr_adj + rpy_scale*_thrust_left; _thrust_rear = throttle_thrust_best_rpy+thr_adj + rpy_scale*_thrust_rear; // scale pivot thrust to account for pivot angle // we should not need to check for divide by zero as _pivot_angle is constrained to the 5deg ~ 80 deg range _thrust_rear = _thrust_rear/cosf(_pivot_angle); // constrain all outputs to 0.0f to 1.0f // test code should be run with these lines commented out as they should not do anything _thrust_right = constrain_float(_thrust_right, 0.0f, 1.0f); _thrust_left = constrain_float(_thrust_left, 0.0f, 1.0f); _thrust_rear = constrain_float(_thrust_rear, 0.0f, 1.0f); } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsTri::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // front right motor rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // back motor rc_write(AP_MOTORS_MOT_4, pwm); break; case 3: // back servo rc_write(AP_MOTORS_CH_TRI_YAW, pwm); break; case 4: // front left motor rc_write(AP_MOTORS_MOT_2, pwm); break; default: // do nothing break; } } // calc_yaw_radio_output - calculate final radio output for yaw channel int16_t AP_MotorsTri::calc_yaw_radio_output(float yaw_input, float yaw_input_max) { int16_t ret; if (_yaw_servo->get_reversed()) { yaw_input = -yaw_input; } if (yaw_input >= 0){ ret = (_yaw_servo->get_trim() + (yaw_input/yaw_input_max * (_yaw_servo->get_output_max() - _yaw_servo->get_trim()))); } else { ret = (_yaw_servo->get_trim() + (yaw_input/yaw_input_max * (_yaw_servo->get_trim() - _yaw_servo->get_output_min()))); } return ret; } /* call vehicle supplied thrust compensation if set. This allows for vehicle specific thrust compensation for motor arrangements such as the forward motors tilting */ void AP_MotorsTri::thrust_compensation(void) { if (_thrust_compensation_callback) { // convert 3 thrust values into an array indexed by motor number float thrust[4] { _thrust_right, _thrust_left, 0, _thrust_rear }; // apply vehicle supplied compensation function _thrust_compensation_callback(thrust, 4); // extract compensated thrust values _thrust_right = thrust[0]; _thrust_left = thrust[1]; _thrust_rear = thrust[3]; } } /* override tricopter tail servo output in output_motor_mask */ void AP_MotorsTri::output_motor_mask(float thrust, uint8_t mask) { // normal multicopter output AP_MotorsMulticopter::output_motor_mask(thrust, mask); // and override yaw servo rc_write(AP_MOTORS_CH_TRI_YAW, _yaw_servo->get_trim()); }