#include "AC_AttitudeControl_Heli.h" #include // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl_Heli::var_info[] = { // parameters from parent vehicle AP_NESTEDGROUPINFO(AC_AttitudeControl, 0), // @Param: HOVR_ROL_TRM // @DisplayName: Hover Roll Trim // @Description: Trim the hover roll angle to counter tail rotor thrust in a hover // @Units: cdeg // @Range: 0 1000 // @User: Advanced AP_GROUPINFO("HOVR_ROL_TRM", 1, AC_AttitudeControl_Heli, _hover_roll_trim, AC_ATTITUDE_HELI_HOVER_ROLL_TRIM_DEFAULT), // @Param: RAT_RLL_P // @DisplayName: Roll axis rate controller P gain // @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output // @Range: 0.08 0.35 // @Increment: 0.005 // @User: Standard // @Param: RAT_RLL_I // @DisplayName: Roll axis rate controller I gain // @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate // @Range: 0.01 0.6 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_IMAX // @DisplayName: Roll axis rate controller I gain maximum // @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_ILMI // @DisplayName: Roll axis rate controller I-term leak minimum // @Description: Point below which I-term will not leak down // @Range: 0 1 // @User: Advanced // @Param: RAT_RLL_D // @DisplayName: Roll axis rate controller D gain // @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate // @Range: 0.001 0.03 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_VFF // @DisplayName: Roll axis rate controller feed forward // @Description: Roll axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FLTT // @DisplayName: Roll axis rate controller target frequency in Hz // @Description: Roll axis rate controller target frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTE // @DisplayName: Roll axis rate controller error frequency in Hz // @Description: Roll axis rate controller error frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTD // @DisplayName: Roll axis rate controller derivative frequency in Hz // @Description: Roll axis rate controller derivative frequency in Hz // @Range: 0 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_SMAX // @DisplayName: Roll slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 2, AC_AttitudeControl_Heli, AC_HELI_PID), // @Param: RAT_PIT_P // @DisplayName: Pitch axis rate controller P gain // @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output // @Range: 0.08 0.35 // @Increment: 0.005 // @User: Standard // @Param: RAT_PIT_I // @DisplayName: Pitch axis rate controller I gain // @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate // @Range: 0.01 0.6 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_IMAX // @DisplayName: Pitch axis rate controller I gain maximum // @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_ILMI // @DisplayName: Pitch axis rate controller I-term leak minimum // @Description: Point below which I-term will not leak down // @Range: 0 1 // @User: Advanced // @Param: RAT_PIT_D // @DisplayName: Pitch axis rate controller D gain // @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate // @Range: 0.001 0.03 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_VFF // @DisplayName: Pitch axis rate controller feed forward // @Description: Pitch axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FLTT // @DisplayName: Pitch axis rate controller target frequency in Hz // @Description: Pitch axis rate controller target frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTE // @DisplayName: Pitch axis rate controller error frequency in Hz // @Description: Pitch axis rate controller error frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTD // @DisplayName: Pitch axis rate controller derivative frequency in Hz // @Description: Pitch axis rate controller derivative frequency in Hz // @Range: 0 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_SMAX // @DisplayName: Pitch slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 3, AC_AttitudeControl_Heli, AC_HELI_PID), // @Param: RAT_YAW_P // @DisplayName: Yaw axis rate controller P gain // @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output // @Range: 0.180 0.60 // @Increment: 0.005 // @User: Standard // @Param: RAT_YAW_I // @DisplayName: Yaw axis rate controller I gain // @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate // @Range: 0.01 0.06 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_IMAX // @DisplayName: Yaw axis rate controller I gain maximum // @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_ILMI // @DisplayName: Yaw axis rate controller I-term leak minimum // @Description: Point below which I-term will not leak down // @Range: 0 1 // @User: Advanced // @Param: RAT_YAW_D // @DisplayName: Yaw axis rate controller D gain // @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate // @Range: 0.000 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_VFF // @DisplayName: Yaw axis rate controller feed forward // @Description: Yaw axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FLTT // @DisplayName: Yaw axis rate controller target frequency in Hz // @Description: Yaw axis rate controller target frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTE // @DisplayName: Yaw axis rate controller error frequency in Hz // @Description: Yaw axis rate controller error frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTD // @DisplayName: Yaw axis rate controller derivative frequency in Hz // @Description: Yaw axis rate controller derivative frequency in Hz // @Range: 0 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_SMAX // @DisplayName: Yaw slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 4, AC_AttitudeControl_Heli, AC_HELI_PID), // @Param: PIRO_COMP // @DisplayName: Piro Comp Enable // @Description: Pirouette compensation enabled // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("PIRO_COMP", 5, AC_AttitudeControl_Heli, _piro_comp_enabled, 0), AP_GROUPEND }; // passthrough_bf_roll_pitch_rate_yaw - passthrough the pilots roll and pitch inputs directly to swashplate for flybar acro mode void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf_cds) { // convert from centidegrees on public interface to radians float yaw_rate_bf_rads = radians(yaw_rate_bf_cds * 0.01f); // store roll, pitch and passthroughs // NOTE: this abuses yaw_rate_bf_rads _passthrough_roll = roll_passthrough; _passthrough_pitch = pitch_passthrough; _passthrough_yaw = degrees(yaw_rate_bf_rads) * 100.0f; // set rate controller to use pass through _flags_heli.flybar_passthrough = true; // set bf rate targets to current body frame rates (i.e. relax and be ready for vehicle to switch out of acro) _attitude_target_ang_vel.x = _ahrs.get_gyro().x; _attitude_target_ang_vel.y = _ahrs.get_gyro().y; // accel limit desired yaw rate if (get_accel_yaw_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt; float rate_change_rads = yaw_rate_bf_rads - _attitude_target_ang_vel.z; rate_change_rads = constrain_float(rate_change_rads, -rate_change_limit_rads, rate_change_limit_rads); _attitude_target_ang_vel.z += rate_change_rads; } else { _attitude_target_ang_vel.z = yaw_rate_bf_rads; } integrate_bf_rate_error_to_angle_errors(); _att_error_rot_vec_rad.x = 0; _att_error_rot_vec_rad.y = 0; // update our earth-frame angle targets Vector3f att_error_euler_rad; // convert angle error rotation vector into 321-intrinsic euler angle difference // NOTE: this results an an approximation linearized about the vehicle's attitude if (ang_vel_to_euler_rate(Vector3f(_ahrs.roll, _ahrs.pitch, _ahrs.yaw), _att_error_rot_vec_rad, att_error_euler_rad)) { _attitude_target_euler_angle.x = wrap_PI(att_error_euler_rad.x + _ahrs.roll); _attitude_target_euler_angle.y = wrap_PI(att_error_euler_rad.y + _ahrs.pitch); _attitude_target_euler_angle.z = wrap_2PI(att_error_euler_rad.z + _ahrs.yaw); } // handle flipping over pitch axis if (_attitude_target_euler_angle.y > M_PI / 2.0f) { _attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + M_PI); _attitude_target_euler_angle.y = wrap_PI(M_PI - _attitude_target_euler_angle.x); _attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + M_PI); } if (_attitude_target_euler_angle.y < -M_PI / 2.0f) { _attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + M_PI); _attitude_target_euler_angle.y = wrap_PI(-M_PI - _attitude_target_euler_angle.x); _attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + M_PI); } // convert body-frame angle errors to body-frame rate targets _rate_target_ang_vel = update_ang_vel_target_from_att_error(_att_error_rot_vec_rad); // set body-frame roll/pitch rate target to current desired rates which are the vehicle's actual rates _rate_target_ang_vel.x = _attitude_target_ang_vel.x; _rate_target_ang_vel.y = _attitude_target_ang_vel.y; // add desired target to yaw _rate_target_ang_vel.z += _attitude_target_ang_vel.z; _thrust_error_angle = norm(_att_error_rot_vec_rad.x, _att_error_rot_vec_rad.y); } void AC_AttitudeControl_Heli::integrate_bf_rate_error_to_angle_errors() { // Integrate the angular velocity error into the attitude error _att_error_rot_vec_rad += (_attitude_target_ang_vel - _ahrs.get_gyro()) * _dt; // Constrain attitude error _att_error_rot_vec_rad.x = constrain_float(_att_error_rot_vec_rad.x, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD); _att_error_rot_vec_rad.y = constrain_float(_att_error_rot_vec_rad.y, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD); _att_error_rot_vec_rad.z = constrain_float(_att_error_rot_vec_rad.z, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD); } // subclass non-passthrough too, for external gyro, no flybar void AC_AttitudeControl_Heli::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { _passthrough_yaw = yaw_rate_bf_cds; AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(roll_rate_bf_cds, pitch_rate_bf_cds, yaw_rate_bf_cds); } // // rate controller (body-frame) methods // // rate_controller_run - run lowest level rate controller and send outputs to the motors // should be called at 100hz or more void AC_AttitudeControl_Heli::rate_controller_run() { _rate_target_ang_vel += _rate_sysid_ang_vel; Vector3f gyro_latest = _ahrs.get_gyro_latest(); // call rate controllers and send output to motors object // if using a flybar passthrough roll and pitch directly to motors if (_flags_heli.flybar_passthrough) { _motors.set_roll(_passthrough_roll / 4500.0f); _motors.set_pitch(_passthrough_pitch / 4500.0f); } else { rate_bf_to_motor_roll_pitch(gyro_latest, _rate_target_ang_vel.x, _rate_target_ang_vel.y); } if (_flags_heli.tail_passthrough) { _motors.set_yaw(_passthrough_yaw / 4500.0f); } else { _motors.set_yaw(rate_target_to_motor_yaw(gyro_latest.z, _rate_target_ang_vel.z)); } _rate_sysid_ang_vel.zero(); _actuator_sysid.zero(); } // Update Alt_Hold angle maximum void AC_AttitudeControl_Heli::update_althold_lean_angle_max(float throttle_in) { float althold_lean_angle_max = acosf(constrain_float(throttle_in / AC_ATTITUDE_HELI_ANGLE_LIMIT_THROTTLE_MAX, 0.0f, 1.0f)); _althold_lean_angle_max = _althold_lean_angle_max + (_dt / (_dt + _angle_limit_tc)) * (althold_lean_angle_max - _althold_lean_angle_max); } // // private methods // // // body-frame rate controller // // rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(const Vector3f &rate_rads, float rate_roll_target_rads, float rate_pitch_target_rads) { if (_flags_heli.leaky_i) { _pid_rate_roll.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); } float roll_pid = _pid_rate_roll.update_all(rate_roll_target_rads, rate_rads.x, _motors.limit.roll) + _actuator_sysid.x; if (_flags_heli.leaky_i) { _pid_rate_pitch.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); } float pitch_pid = _pid_rate_pitch.update_all(rate_pitch_target_rads, rate_rads.y, _motors.limit.pitch) + _actuator_sysid.y; // use pid library to calculate ff float roll_ff = _pid_rate_roll.get_ff(); float pitch_ff = _pid_rate_pitch.get_ff(); // add feed forward and final output float roll_out = roll_pid + roll_ff; float pitch_out = pitch_pid + pitch_ff; // constrain output and update limit flags if (fabsf(roll_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { roll_out = constrain_float(roll_out, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); _flags_heli.limit_roll = true; } else { _flags_heli.limit_roll = false; } if (fabsf(pitch_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { pitch_out = constrain_float(pitch_out, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); _flags_heli.limit_pitch = true; } else { _flags_heli.limit_pitch = false; } // output to motors _motors.set_roll(roll_out); _motors.set_pitch(pitch_out); // Piro-Comp, or Pirouette Compensation is a pre-compensation calculation, which basically rotates the Roll and Pitch Rate I-terms as the // helicopter rotates in yaw. Much of the built-up I-term is needed to tip the disk into the incoming wind. Fast yawing can create an instability // as the built-up I-term in one axis must be reduced, while the other increases. This helps solve that by rotating the I-terms before the error occurs. // It does assume that the rotor aerodynamics and mechanics are essentially symmetrical about the main shaft, which is a generally valid assumption. if (_piro_comp_enabled) { // used to hold current I-terms while doing piro comp: const float piro_roll_i = _pid_rate_roll.get_i(); const float piro_pitch_i = _pid_rate_pitch.get_i(); Vector2f yawratevector; yawratevector.x = cosf(-rate_rads.z * _dt); yawratevector.y = sinf(-rate_rads.z * _dt); yawratevector.normalize(); _pid_rate_roll.set_integrator(piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y); _pid_rate_pitch.set_integrator(piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y); } } // rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second float AC_AttitudeControl_Heli::rate_target_to_motor_yaw(float rate_yaw_actual_rads, float rate_target_rads) { if (!((AP_MotorsHeli&)_motors).rotor_runup_complete()) { _pid_rate_yaw.update_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); } float pid = _pid_rate_yaw.update_all(rate_target_rads, rate_yaw_actual_rads, _motors.limit.yaw) + _actuator_sysid.z; // use pid library to calculate ff float vff = _pid_rate_yaw.get_ff()*_feedforward_scalar; // add feed forward float yaw_out = pid + vff; // constrain output and update limit flag if (fabsf(yaw_out) > AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX) { yaw_out = constrain_float(yaw_out, -AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX); _flags_heli.limit_yaw = true; } else { _flags_heli.limit_yaw = false; } // output to motors return yaw_out; } // // throttle functions // void AC_AttitudeControl_Heli::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff) { _throttle_in = throttle_in; update_althold_lean_angle_max(throttle_in); _motors.set_throttle_filter_cutoff(filter_cutoff); _motors.set_throttle(throttle_in); // Clear angle_boost for logging purposes _angle_boost = 0.0f; } // Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing void AC_AttitudeControl_Heli::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds) { if (_inverted_flight) { euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000); } AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_rate_cds); } // Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing void AC_AttitudeControl_Heli::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw) { if (_inverted_flight) { euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000); } AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_angle_cd, slew_yaw); }