/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Copyright 2010 Michael Smith, all rights reserved. // Derived closely from: /**************************************** * 2D Vector Classes * By Bill Perone (billperone@yahoo.com) * Original: 9-16-2002 * Revised: 19-11-2003 * 18-12-2003 * 06-06-2004 * * © 2003, This code is provided "as is" and you can use it freely as long as * credit is given to Bill Perone in the application it is used in ****************************************/ #pragma once #include template struct Vector2 { T x, y; // trivial ctor constexpr Vector2() : x(0) , y(0) {} // setting ctor constexpr Vector2(const T x0, const T y0) : x(x0) , y(y0) {} // function call operator void operator ()(const T x0, const T y0) { x= x0; y= y0; } // test for equality bool operator ==(const Vector2 &v) const; // test for inequality bool operator !=(const Vector2 &v) const; // negation Vector2 operator -(void) const; // addition Vector2 operator +(const Vector2 &v) const; // subtraction Vector2 operator -(const Vector2 &v) const; // uniform scaling Vector2 operator *(const T num) const; // uniform scaling Vector2 operator /(const T num) const; // addition Vector2 &operator +=(const Vector2 &v); // subtraction Vector2 &operator -=(const Vector2 &v); // uniform scaling Vector2 &operator *=(const T num); // uniform scaling Vector2 &operator /=(const T num); // dot product T operator *(const Vector2 &v) const; // cross product T operator %(const Vector2 &v) const; // computes the angle between this vector and another vector float angle(const Vector2 &v2) const; // computes the angle in radians between the origin and this vector T angle(void) const; // check if any elements are NAN bool is_nan(void) const; // check if any elements are infinity bool is_inf(void) const; // check if all elements are zero bool is_zero(void) const { return (fabsf(x) < FLT_EPSILON) && (fabsf(y) < FLT_EPSILON); } const T & operator[](uint8_t i) const { const T *_v = &x; #if MATH_CHECK_INDEXES assert(i >= 0 && i < 2); #endif return _v[i]; } // zero the vector void zero() { x = y = 0; } // gets the length of this vector squared T length_squared() const { return (T)(*this * *this); } // gets the length of this vector float length(void) const; // normalizes this vector void normalize() { *this/=length(); } // returns the normalized vector Vector2 normalized() const { return *this/length(); } // reflects this vector about n void reflect(const Vector2 &n) { Vector2 orig(*this); project(n); *this= *this*2 - orig; } // projects this vector onto v void project(const Vector2 &v) { *this= v * (*this * v)/(v*v); } // returns this vector projected onto v Vector2 projected(const Vector2 &v) { return v * (*this * v)/(v*v); } // given a position p1 and a velocity v1 produce a vector // perpendicular to v1 maximising distance from p1 static Vector2 perpendicular(const Vector2 &pos_delta, const Vector2 &v1) { Vector2 perpendicular1 = Vector2(-v1[1], v1[0]); Vector2 perpendicular2 = Vector2(v1[1], -v1[0]); T d1 = perpendicular1 * pos_delta; T d2 = perpendicular2 * pos_delta; if (d1 > d2) { return perpendicular1; } return perpendicular2; } /* * Returns the point closest to p on the line segment (v,w). * * Comments and implementation taken from * http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment */ static Vector2 closest_point(const Vector2 &p, const Vector2 &v, const Vector2 &w) { // length squared of line segment const float l2 = (v - w).length_squared(); if (l2 < FLT_EPSILON) { // v == w case return v; } // Consider the line extending the segment, parameterized as v + t (w - v). // We find projection of point p onto the line. // It falls where t = [(p-v) . (w-v)] / |w-v|^2 // We clamp t from [0,1] to handle points outside the segment vw. const float t = ((p - v) * (w - v)) / l2; if (t <= 0) { return v; } else if (t >= 1) { return w; } else { return v + (w - v)*t; } } // w defines a line segment from the origin // p is a point // returns the closest distance between the radial and the point static float closest_distance_between_radial_and_point(const Vector2 &w, const Vector2 &p) { const Vector2 closest = closest_point(p, Vector2(0,0), w); const Vector2 delta = closest - p; return delta.length(); } }; typedef Vector2 Vector2i; typedef Vector2 Vector2ui; typedef Vector2 Vector2l; typedef Vector2 Vector2ul; typedef Vector2 Vector2f;