/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Copyright 2010 Michael Smith, all rights reserved.
// Derived closely from:
/****************************************
* 2D Vector Classes
* By Bill Perone (billperone@yahoo.com)
* Original: 9-16-2002
* Revised: 19-11-2003
* 18-12-2003
* 06-06-2004
*
* © 2003, This code is provided "as is" and you can use it freely as long as
* credit is given to Bill Perone in the application it is used in
****************************************/
#pragma once
#include
template
struct Vector2
{
T x, y;
// trivial ctor
constexpr Vector2()
: x(0)
, y(0) {}
// setting ctor
constexpr Vector2(const T x0, const T y0)
: x(x0)
, y(y0) {}
// function call operator
void operator ()(const T x0, const T y0)
{
x= x0; y= y0;
}
// test for equality
bool operator ==(const Vector2 &v) const;
// test for inequality
bool operator !=(const Vector2 &v) const;
// negation
Vector2 operator -(void) const;
// addition
Vector2 operator +(const Vector2 &v) const;
// subtraction
Vector2 operator -(const Vector2 &v) const;
// uniform scaling
Vector2 operator *(const T num) const;
// uniform scaling
Vector2 operator /(const T num) const;
// addition
Vector2 &operator +=(const Vector2 &v);
// subtraction
Vector2 &operator -=(const Vector2 &v);
// uniform scaling
Vector2 &operator *=(const T num);
// uniform scaling
Vector2 &operator /=(const T num);
// dot product
T operator *(const Vector2 &v) const;
// cross product
T operator %(const Vector2 &v) const;
// computes the angle between this vector and another vector
float angle(const Vector2 &v2) const;
// computes the angle in radians between the origin and this vector
T angle(void) const;
// check if any elements are NAN
bool is_nan(void) const;
// check if any elements are infinity
bool is_inf(void) const;
// check if all elements are zero
bool is_zero(void) const { return (fabsf(x) < FLT_EPSILON) && (fabsf(y) < FLT_EPSILON); }
const T & operator[](uint8_t i) const {
const T *_v = &x;
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < 2);
#endif
return _v[i];
}
// zero the vector
void zero()
{
x = y = 0;
}
// gets the length of this vector squared
T length_squared() const
{
return (T)(*this * *this);
}
// gets the length of this vector
float length(void) const;
// normalizes this vector
void normalize()
{
*this/=length();
}
// returns the normalized vector
Vector2 normalized() const
{
return *this/length();
}
// reflects this vector about n
void reflect(const Vector2 &n)
{
Vector2 orig(*this);
project(n);
*this= *this*2 - orig;
}
// projects this vector onto v
void project(const Vector2 &v)
{
*this= v * (*this * v)/(v*v);
}
// returns this vector projected onto v
Vector2 projected(const Vector2 &v)
{
return v * (*this * v)/(v*v);
}
// given a position p1 and a velocity v1 produce a vector
// perpendicular to v1 maximising distance from p1
static Vector2 perpendicular(const Vector2 &pos_delta, const Vector2 &v1)
{
Vector2 perpendicular1 = Vector2(-v1[1], v1[0]);
Vector2 perpendicular2 = Vector2(v1[1], -v1[0]);
T d1 = perpendicular1 * pos_delta;
T d2 = perpendicular2 * pos_delta;
if (d1 > d2) {
return perpendicular1;
}
return perpendicular2;
}
/*
* Returns the point closest to p on the line segment (v,w).
*
* Comments and implementation taken from
* http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
*/
static Vector2 closest_point(const Vector2 &p, const Vector2 &v, const Vector2 &w)
{
// length squared of line segment
const float l2 = (v - w).length_squared();
if (l2 < FLT_EPSILON) {
// v == w case
return v;
}
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
// We clamp t from [0,1] to handle points outside the segment vw.
const float t = ((p - v) * (w - v)) / l2;
if (t <= 0) {
return v;
} else if (t >= 1) {
return w;
} else {
return v + (w - v)*t;
}
}
// w defines a line segment from the origin
// p is a point
// returns the closest distance between the radial and the point
static float closest_distance_between_radial_and_point(const Vector2 &w,
const Vector2 &p)
{
const Vector2 closest = closest_point(p, Vector2(0,0), w);
const Vector2 delta = closest - p;
return delta.length();
}
};
typedef Vector2 Vector2i;
typedef Vector2 Vector2ui;
typedef Vector2 Vector2l;
typedef Vector2 Vector2ul;
typedef Vector2 Vector2f;