/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include #include "AP_InertialSensor_MPU6000.h" extern const AP_HAL::HAL& hal; // MPU6000 accelerometer scaling #define MPU6000_ACCEL_SCALE_1G (GRAVITY / 4096.0) // MPU 6000 registers #define MPUREG_XG_OFFS_TC 0x00 #define MPUREG_YG_OFFS_TC 0x01 #define MPUREG_ZG_OFFS_TC 0x02 #define MPUREG_X_FINE_GAIN 0x03 #define MPUREG_Y_FINE_GAIN 0x04 #define MPUREG_Z_FINE_GAIN 0x05 #define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte) #define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte) #define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte) #define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte) #define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte) #define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte) #define MPUREG_PRODUCT_ID 0x0C // Product ID Register #define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) #define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) #define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) #define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) #define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) #define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) #define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(+1) = 200Hz # define MPUREG_SMPLRT_1000HZ 0x00 # define MPUREG_SMPLRT_500HZ 0x01 # define MPUREG_SMPLRT_250HZ 0x03 # define MPUREG_SMPLRT_200HZ 0x04 # define MPUREG_SMPLRT_100HZ 0x09 # define MPUREG_SMPLRT_50HZ 0x13 #define MPUREG_CONFIG 0x1A #define MPUREG_GYRO_CONFIG 0x1B // bit definitions for MPUREG_GYRO_CONFIG # define BITS_GYRO_FS_250DPS 0x00 # define BITS_GYRO_FS_500DPS 0x08 # define BITS_GYRO_FS_1000DPS 0x10 # define BITS_GYRO_FS_2000DPS 0x18 # define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits # define BITS_GYRO_ZGYRO_SELFTEST 0x20 # define BITS_GYRO_YGYRO_SELFTEST 0x40 # define BITS_GYRO_XGYRO_SELFTEST 0x80 #define MPUREG_ACCEL_CONFIG 0x1C #define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this #define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms #define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. #define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. #define MPUREG_FIFO_EN 0x23 #define MPUREG_INT_PIN_CFG 0x37 # define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs #define MPUREG_INT_ENABLE 0x38 // bit definitions for MPUREG_INT_ENABLE # define BIT_RAW_RDY_EN 0x01 # define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems # define BIT_UNKNOWN_INT_EN 0x04 # define BIT_I2C_MST_INT_EN 0x08 # define BIT_FIFO_OFLOW_EN 0x10 # define BIT_ZMOT_EN 0x20 # define BIT_MOT_EN 0x40 # define BIT_FF_EN 0x80 #define MPUREG_INT_STATUS 0x3A // bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) # define BIT_RAW_RDY_INT 0x01 # define BIT_DMP_INT 0x02 # define BIT_UNKNOWN_INT 0x04 # define BIT_I2C_MST_INT 0x08 # define BIT_FIFO_OFLOW_INT 0x10 # define BIT_ZMOT_INT 0x20 # define BIT_MOT_INT 0x40 # define BIT_FF_INT 0x80 #define MPUREG_ACCEL_XOUT_H 0x3B #define MPUREG_ACCEL_XOUT_L 0x3C #define MPUREG_ACCEL_YOUT_H 0x3D #define MPUREG_ACCEL_YOUT_L 0x3E #define MPUREG_ACCEL_ZOUT_H 0x3F #define MPUREG_ACCEL_ZOUT_L 0x40 #define MPUREG_TEMP_OUT_H 0x41 #define MPUREG_TEMP_OUT_L 0x42 #define MPUREG_GYRO_XOUT_H 0x43 #define MPUREG_GYRO_XOUT_L 0x44 #define MPUREG_GYRO_YOUT_H 0x45 #define MPUREG_GYRO_YOUT_L 0x46 #define MPUREG_GYRO_ZOUT_H 0x47 #define MPUREG_GYRO_ZOUT_L 0x48 #define MPUREG_USER_CTRL 0x6A // bit definitions for MPUREG_USER_CTRL # define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) # define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) # define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer # define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP # define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface # define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors # define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations # define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device #define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode #define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) #define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) #define MPUREG_MEM_R_W 0x6F // DMP related register #define MPUREG_DMP_CFG_1 0x70 // DMP related register #define MPUREG_DMP_CFG_2 0x71 // DMP related register #define MPUREG_FIFO_COUNTH 0x72 #define MPUREG_FIFO_COUNTL 0x73 #define MPUREG_FIFO_R_W 0x74 #define MPUREG_WHOAMI 0x75 // Configuration bits MPU 3000 and MPU 6000 (not revised)? #define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 #define BITS_DLPF_CFG_188HZ 0x01 #define BITS_DLPF_CFG_98HZ 0x02 #define BITS_DLPF_CFG_42HZ 0x03 #define BITS_DLPF_CFG_20HZ 0x04 #define BITS_DLPF_CFG_10HZ 0x05 #define BITS_DLPF_CFG_5HZ 0x06 #define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 #define BITS_DLPF_CFG_MASK 0x07 // Product ID Description for MPU6000 // high 4 bits low 4 bits // Product Name Product Revision #define MPU6000ES_REV_C4 0x14 // 0001 0100 #define MPU6000ES_REV_C5 0x15 // 0001 0101 #define MPU6000ES_REV_D6 0x16 // 0001 0110 #define MPU6000ES_REV_D7 0x17 // 0001 0111 #define MPU6000ES_REV_D8 0x18 // 0001 1000 #define MPU6000_REV_C4 0x54 // 0101 0100 #define MPU6000_REV_C5 0x55 // 0101 0101 #define MPU6000_REV_D6 0x56 // 0101 0110 #define MPU6000_REV_D7 0x57 // 0101 0111 #define MPU6000_REV_D8 0x58 // 0101 1000 #define MPU6000_REV_D9 0x59 // 0101 1001 // DMP output rate constants #define MPU6000_200HZ 0x00 // default value #define MPU6000_100HZ 0x01 #define MPU6000_66HZ 0x02 #define MPU6000_50HZ 0x03 // DMP FIFO constants // Default quaternion FIFO size (4*4) + Footer(2) #define FIFO_PACKET_SIZE 18 // Rate of the gyro bias from gravity correction (200Hz/4) => 50Hz #define GYRO_BIAS_FROM_GRAVITY_RATE 4 // Default gain for accel fusion (with gyros) #define DEFAULT_ACCEL_FUSION_GAIN 0x80 /* * RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of * gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) */ const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532 / 16.4); /* pch: I believe the accel and gyro indicies are correct * but somone else should please confirm. */ const uint8_t AP_InertialSensor_MPU6000::_gyro_data_index[3] = { 5, 4, 6 }; const int8_t AP_InertialSensor_MPU6000::_gyro_data_sign[3] = { 1, 1, -1 }; const uint8_t AP_InertialSensor_MPU6000::_accel_data_index[3] = { 1, 0, 2 }; const int8_t AP_InertialSensor_MPU6000::_accel_data_sign[3] = { 1, 1, -1 }; const uint8_t AP_InertialSensor_MPU6000::_temp_data_index = 3; int16_t AP_InertialSensor_MPU6000::_mpu6000_product_id = AP_PRODUCT_ID_NONE; // variables to calculate time period over which a group of samples were // collected // time period overwhich samples were collected (initialise to non-zero // number but will be overwritten on 2nd read in any case) static volatile uint32_t _delta_time_micros = 1; // time we start collecting sample (reset on update) static volatile uint32_t _delta_time_start_micros = 0; // time latest sample was collected static volatile uint32_t _last_sample_time_micros = 0; // DMP related static variables bool AP_InertialSensor_MPU6000::_dmp_initialised = false; // high byte of number of elements in fifo buffer uint8_t AP_InertialSensor_MPU6000::_fifoCountH; // low byte of number of elements in fifo buffer uint8_t AP_InertialSensor_MPU6000::_fifoCountL; // holds the 4 quaternions representing attitude taken directly from the DMP Quaternion AP_InertialSensor_MPU6000::quaternion; /* Static SPI device driver */ AP_HAL::SPIDeviceDriver* AP_InertialSensor_MPU6000::_spi = NULL; AP_HAL::Semaphore* AP_InertialSensor_MPU6000::_spi_sem = NULL; /* * RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of * accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) * * See note below about accel scaling of engineering sample MPU6k * variants however */ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000() { _temp = 0; _initialised = false; _dmp_initialised = false; } uint16_t AP_InertialSensor_MPU6000::_init_sensor( Sample_rate sample_rate ) { if (_initialised) return _mpu6000_product_id; _initialised = true; hal.scheduler->suspend_timer_procs(); hardware_init(sample_rate); hal.scheduler->resume_timer_procs(); return _mpu6000_product_id; } // accumulation in ISR - must be read with interrupts disabled // the sum of the values since last read static volatile int32_t _sum[7]; // how many values we've accumulated since last read static volatile uint16_t _count; /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_MPU6000::update( void ) { int32_t sum[7]; uint16_t count; float count_scale; Vector3f gyro_offset = _gyro_offset.get(); Vector3f accel_scale = _accel_scale.get(); Vector3f accel_offset = _accel_offset.get(); // wait for at least 1 sample uint32_t tstart = hal.scheduler->micros(); while (_count == 0) { if (hal.scheduler->micros() - tstart > 50000) { hal.console->println_P( PSTR("PANIC: AP_InertialSensor_MPU6000::update " "waited 50ms for data from interrupt")); return false; } } // disable interrupts for mininum time hal.scheduler->begin_atomic(); for (int i=0; i<7; i++) { sum[i] = _sum[i]; _sum[i] = 0; } count = _count; _count = 0; // record sample time _delta_time_micros = _last_sample_time_micros - _delta_time_start_micros; _delta_time_start_micros = _last_sample_time_micros; hal.scheduler->end_atomic(); count_scale = 1.0 / count; _gyro.x = _gyro_scale * _gyro_data_sign[0] * sum[_gyro_data_index[0]] * count_scale; _gyro.y = _gyro_scale * _gyro_data_sign[1] * sum[_gyro_data_index[1]] * count_scale; _gyro.z = _gyro_scale * _gyro_data_sign[2] * sum[_gyro_data_index[2]] * count_scale; _gyro -= gyro_offset; _accel.x = accel_scale.x * _accel_data_sign[0] * sum[_accel_data_index[0]] * count_scale * MPU6000_ACCEL_SCALE_1G; _accel.y = accel_scale.y * _accel_data_sign[1] * sum[_accel_data_index[1]] * count_scale * MPU6000_ACCEL_SCALE_1G; _accel.z = accel_scale.z * _accel_data_sign[2] * sum[_accel_data_index[2]] * count_scale * MPU6000_ACCEL_SCALE_1G; _accel -= _accel_offset; _temp = _temp_to_celsius(sum[_temp_data_index] * count_scale); return true; } bool AP_InertialSensor_MPU6000::new_data_available( void ) { return _count != 0; } float AP_InertialSensor_MPU6000::temperature() { return _temp; } /*================ HARDWARE FUNCTIONS ==================== */ static int16_t spi_transfer_16(AP_HAL::SPIDeviceDriver *_spi) { uint8_t byte_H, byte_L; byte_H = _spi->transfer(0); byte_L = _spi->transfer(0); return (((int16_t)byte_H)<<8) | byte_L; } /* * this is called from the data_interrupt which fires when the MPU6000 has new * sensor data available and add it to _sum[] to ensure this is the case, * these other devices must perform their spi reads after being called by the * AP_TimerProcess. */ void AP_InertialSensor_MPU6000::read(uint32_t) { static int semfail_ctr = 0; if (_spi_sem) { bool got = _spi_sem->get((void*)&_spi_sem); if (!got) { semfail_ctr++; if (semfail_ctr > 100) { hal.console->println_P(PSTR("PANIC: failed to take _spi_sem " "100 times in AP_InertialSensor_MPU6000::read")); } return; } else { semfail_ctr = 0; } } // now read the data _spi->cs_assert(); uint8_t addr = MPUREG_ACCEL_XOUT_H | 0x80; _spi->transfer(addr); for (uint8_t i=0; i<7; i++) { _sum[i] += spi_transfer_16(_spi); } _spi->cs_release(); _count++; if (_count == 0) { // rollover - v unlikely memset((void*)_sum, 0, sizeof(_sum)); } // should also read FIFO data if enabled if( _dmp_initialised ) { if( FIFO_ready() ) { FIFO_getPacket(); } } if (_spi_sem) { bool released = _spi_sem->release((void*)&_spi_sem); if (!released) { hal.console->println_P(PSTR("PANIC: _spi_sem release failed in " "AP_InertialSensor_MPU6000::read")); } } } uint8_t AP_InertialSensor_MPU6000::register_read( uint8_t reg ) { uint8_t return_value; uint8_t addr = reg | 0x80; // Set most significant bit _spi->cs_assert(); _spi->transfer(addr); return_value = _spi->transfer(0); _spi->cs_release(); return return_value; } void AP_InertialSensor_MPU6000::register_write(uint8_t reg, uint8_t val) { _spi->cs_assert(); _spi->transfer(reg); _spi->transfer(val); _spi->cs_release(); } // MPU6000 new data interrupt on INT6 void AP_InertialSensor_MPU6000::data_interrupt(void) { // record time that data was available _last_sample_time_micros = hal.scheduler->micros(); // queue our read process to run after any currently running timed // processes complete hal.scheduler->defer_timer_process( AP_InertialSensor_MPU6000::read ); } void AP_InertialSensor_MPU6000::hardware_init(Sample_rate sample_rate) { _spi = hal.spi->device(AP_HAL::SPIDevice_MPU6000); _spi_sem = _spi->get_semaphore(); // Chip reset register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); hal.scheduler->delay(100); // Wake up device and select GyroZ clock (better performance) register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); hal.scheduler->delay(1); register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode hal.scheduler->delay(1); // Disable I2C bus (recommended on datasheet) register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS); hal.scheduler->delay(1); uint8_t rate, filter, default_filter; // sample rate and filtering // to minimise the effects of aliasing we choose a filter // that is less than half of the sample rate switch (sample_rate) { case RATE_50HZ: rate = MPUREG_SMPLRT_50HZ; default_filter = BITS_DLPF_CFG_20HZ; break; case RATE_100HZ: rate = MPUREG_SMPLRT_100HZ; default_filter = BITS_DLPF_CFG_42HZ; break; case RATE_200HZ: default: rate = MPUREG_SMPLRT_200HZ; default_filter = BITS_DLPF_CFG_42HZ; break; } // choose filtering frequency switch (_mpu6000_filter) { case 5: filter = BITS_DLPF_CFG_5HZ; break; case 10: filter = BITS_DLPF_CFG_10HZ; break; case 20: filter = BITS_DLPF_CFG_20HZ; break; case 42: filter = BITS_DLPF_CFG_42HZ; break; case 98: filter = BITS_DLPF_CFG_98HZ; break; case 0: default: // the user hasn't specified a specific frequency, // use the default value for the given sample rate filter = default_filter; } // set sample rate register_write(MPUREG_SMPLRT_DIV, rate); hal.scheduler->delay(1); // set low pass filter register_write(MPUREG_CONFIG, filter); hal.scheduler->delay(1); register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000ยบ/s hal.scheduler->delay(1); _mpu6000_product_id = register_read(MPUREG_PRODUCT_ID); // read the product ID rev c has 1/2 the sensitivity of rev d //Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id); if ((_mpu6000_product_id == MPU6000ES_REV_C4) || (_mpu6000_product_id == MPU6000ES_REV_C5) || (_mpu6000_product_id == MPU6000_REV_C4) || (_mpu6000_product_id == MPU6000_REV_C5)) { // Accel scale 8g (4096 LSB/g) // Rev C has different scaling than rev D register_write(MPUREG_ACCEL_CONFIG,1<<3); } else { // Accel scale 8g (4096 LSB/g) register_write(MPUREG_ACCEL_CONFIG,2<<3); } hal.scheduler->delay(1); register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); // configure interrupt to fire when new data arrives hal.scheduler->delay(1); register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR); // clear interrupt on any read hal.scheduler->delay(1); if (!hal.gpio->attach_interrupt(6, data_interrupt, GPIO_RISING)) { hal.console->println_P( PSTR("Critical Error: AP_InertialSensor_MPU6000 could not " "attach data ready interrupt.")); } } float AP_InertialSensor_MPU6000::_temp_to_celsius ( uint16_t regval ) { /* TODO */ return 20.0; } // return the MPU6k gyro drift rate in radian/s/s // note that this is much better than the oilpan gyros float AP_InertialSensor_MPU6000::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } // get number of samples read from the sensors uint16_t AP_InertialSensor_MPU6000::num_samples_available() { return _count; } // get_delta_time returns the time period in seconds overwhich the sensor data was collected uint32_t AP_InertialSensor_MPU6000::get_delta_time_micros() { return _delta_time_micros; } // Update gyro offsets with new values. Offsets provided in as scaled deg/sec values void AP_InertialSensor_MPU6000::push_gyro_offsets_to_dmp() { Vector3f gyro_offsets = _gyro_offset.get(); int16_t offsetX = gyro_offsets.x / _gyro_scale * _gyro_data_sign[0]; int16_t offsetY = gyro_offsets.y / _gyro_scale * _gyro_data_sign[1]; int16_t offsetZ = gyro_offsets.z / _gyro_scale * _gyro_data_sign[2]; set_dmp_gyro_offsets(offsetX, offsetY, offsetZ); // remove ins level offsets to avoid double counting gyro_offsets.x = 0; gyro_offsets.y = 0; gyro_offsets.z = 0; _gyro_offset = gyro_offsets; } // Update gyro offsets with new values. New offset values are substracted to actual offset values. // offset values in gyro LSB units (as read from registers) void AP_InertialSensor_MPU6000::set_dmp_gyro_offsets(int16_t offsetX, int16_t offsetY, int16_t offsetZ) { int16_t aux_int; if (offsetX != 0) { // Read actual value aux_int = (register_read(MPUREG_XG_OFFS_USRH)<<8) | register_read(MPUREG_XG_OFFS_USRL); aux_int -= offsetX<<1; // Adjust to internal units // Write to MPU registers register_write(MPUREG_XG_OFFS_USRH, (aux_int>>8)&0xFF); register_write(MPUREG_XG_OFFS_USRL, aux_int&0xFF); } if (offsetY != 0) { aux_int = (register_read(MPUREG_YG_OFFS_USRH)<<8) | register_read(MPUREG_YG_OFFS_USRL); aux_int -= offsetY<<1; // Adjust to internal units // Write to MPU registers register_write(MPUREG_YG_OFFS_USRH, (aux_int>>8)&0xFF); register_write(MPUREG_YG_OFFS_USRL, aux_int&0xFF); } if (offsetZ != 0) { aux_int = (register_read(MPUREG_ZG_OFFS_USRH)<<8) | register_read(MPUREG_ZG_OFFS_USRL); aux_int -= offsetZ<<1; // Adjust to internal units // Write to MPU registers register_write(MPUREG_ZG_OFFS_USRH, (aux_int>>8)&0xFF); register_write(MPUREG_ZG_OFFS_USRL, aux_int&0xFF); } } // Update accel offsets with new values. Offsets provided in as scaled values (1G) void AP_InertialSensor_MPU6000::push_accel_offsets_to_dmp() { Vector3f accel_offset = _accel_offset.get(); Vector3f accel_scale = _accel_scale.get(); int16_t offsetX = accel_offset.x / (accel_scale.x * _accel_data_sign[0] * MPU6000_ACCEL_SCALE_1G); int16_t offsetY = accel_offset.y / (accel_scale.y * _accel_data_sign[1] * MPU6000_ACCEL_SCALE_1G); int16_t offsetZ = accel_offset.z / (accel_scale.z * _accel_data_sign[2] * MPU6000_ACCEL_SCALE_1G); // strangely x and y are reversed set_dmp_accel_offsets(offsetY, offsetX, offsetZ); } // set_accel_offsets - adds an offset to acceleromter readings // This is useful for dynamic acceleration correction (for example centripetal force correction) // and for the initial offset calibration // Input, accel offsets for X,Y and Z in LSB units (as read from raw values) void AP_InertialSensor_MPU6000::set_dmp_accel_offsets(int16_t offsetX, int16_t offsetY, int16_t offsetZ) { int aux_int; uint8_t regs[2]; // Write accel offsets to DMP memory... // TO-DO: why don't we write to main accel offset registries? i.e. MPUREG_XA_OFFS_H aux_int = offsetX>>1; // Transform to internal units regs[0]=(aux_int>>8)&0xFF; regs[1]=aux_int&0xFF; dmp_register_write(0x01,0x08,2,regs); // key KEY_D_1_8 Accel X offset aux_int = offsetY>>1; regs[0]=(aux_int>>8)&0xFF; regs[1]=aux_int&0xFF; dmp_register_write(0x01,0x0A,2,regs); // key KEY_D_1_10 Accel Y offset aux_int = offsetZ>>1; regs[0]=(aux_int>>8)&0xFF; regs[1]=aux_int&0xFF; dmp_register_write(0x01,0x02,2,regs); // key KEY_D_1_2 Accel Z offset } // dmp_register_write - method to write to dmp's registers // the dmp is logically separated from the main mpu6000. To write a block of memory to the DMP's memory you // write the "bank" and starting address into two of the main MPU's registers, then write the data one byte // at a time into the MPUREG_MEM_R_W register void AP_InertialSensor_MPU6000::dmp_register_write(uint8_t bank, uint8_t address, uint8_t num_bytes, uint8_t data[]) { register_write(MPUREG_BANK_SEL,bank); register_write(MPUREG_MEM_START_ADDR,address); _spi->cs_assert(); _spi->transfer(MPUREG_MEM_R_W); for (uint8_t i=0; itransfer(data[i]); } _spi->cs_release(); } // MPU6000 DMP initialization // this should be called after hardware_init if you wish to enable the dmp void AP_InertialSensor_MPU6000::dmp_init() { uint8_t regs[4]; // for writing to dmp // ensure we only initialise once if( _dmp_initialised ) { return; } // load initial values into DMP memory dmp_load_mem(); dmp_set_gyro_calibration(); dmp_set_accel_calibration(); dmp_apply_endian_accel(); dmp_set_mpu_sensors(); dmp_set_bias_none(); dmp_set_fifo_interrupt(); dmp_send_quaternion(); // By default we only send the quaternion to the FIFO (18 bytes packet size) dmp_set_fifo_rate(MPU6000_200HZ); // 200Hz DMP output rate register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN | BIT_DMP_INT_EN ); // configure interrupts to fire only when new data arrives from DMP (in fifo buffer) // Randy: no idea what this does register_write(MPUREG_DMP_CFG_1, 0x03); //MPUREG_DMP_CFG_1, 0x03 register_write(MPUREG_DMP_CFG_2, 0x00); //MPUREG_DMP_CFG_2, 0x00 //inv_state_change_fifo regs[0] = 0xFF; regs[1] = 0xFF; dmp_register_write(0x01, 0xB2, 0x02, regs); // D_1_178 // ?? FIFO ?? regs[0] = 0x09; regs[1] = 0x23; regs[2] = 0xA1; regs[3] = 0x35; dmp_register_write(0x01, 0x90, 0x04, regs); // D_1_144 //register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET); //MPUREG_USER_CTRL, BIT_FIFO_RST FIFO_reset(); FIFO_ready(); //register_write(MPUREG_USER_CTRL, 0x00); // MPUREG_USER_CTRL, 0. TO-DO: is all this setting of USER_CTRL really necessary? register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET); //MPUREG_USER_CTRL, BIT_FIFO_RST. TO-DO: replace this call with FIFO_reset()? register_write(MPUREG_USER_CTRL, 0x00); // MPUREG_USER_CTRL: 0 register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_DMP_EN | BIT_USER_CTRL_FIFO_EN | BIT_USER_CTRL_DMP_RESET); // Set the gain of the accel in the sensor fusion dmp_set_sensor_fusion_accel_gain(DEFAULT_ACCEL_FUSION_GAIN); // default value // dmp initialisation complete _dmp_initialised = true; } // dmp_reset - reset dmp (required for changes in gains or offsets to take effect) void AP_InertialSensor_MPU6000::dmp_reset() { //uint8_t tmp = register_read(MPUREG_USER_CTRL); //tmp |= BIT_USER_CTRL_DMP_RESET; //register_write(MPUREG_USER_CTRL,tmp); register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET); //MPUREG_USER_CTRL, BIT_FIFO_RST. TO-DO: replace this call with FIFO_reset()? register_write(MPUREG_USER_CTRL, 0x00); // MPUREG_USER_CTRL: 0 register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_DMP_EN | BIT_USER_CTRL_FIFO_EN | BIT_USER_CTRL_DMP_RESET); } // New data packet in FIFO? bool AP_InertialSensor_MPU6000::FIFO_ready() { _fifoCountH = register_read(MPUREG_FIFO_COUNTH); _fifoCountL = register_read(MPUREG_FIFO_COUNTL); if(_fifoCountL == FIFO_PACKET_SIZE) { return 1; } else{ //We should not reach this point or maybe we have more than one packet (we should manage this!) FIFO_reset(); return 0; } } // FIFO_reset - reset/clear FIFO buffer used to capture attitude information from DMP void AP_InertialSensor_MPU6000::FIFO_reset() { uint8_t temp; temp = register_read(MPUREG_USER_CTRL); temp = temp | BIT_USER_CTRL_FIFO_RESET; // FIFO RESET BIT register_write(MPUREG_USER_CTRL, temp); } // FIFO_getPacket - read an attitude packet from FIFO buffer // TO-DO: interpret results instead of just dumping into a buffer void AP_InertialSensor_MPU6000::FIFO_getPacket() { uint8_t i; int16_t q_long[4]; uint8_t addr = MPUREG_FIFO_R_W | 0x80; // Set most significant bit to indicate a read uint8_t received_packet[DMP_FIFO_BUFFER_SIZE]; // FIFO packet buffer _spi->cs_assert(); _spi->transfer(addr); // send address we want to read from for(i = 0; i < _fifoCountL; i++) { received_packet[i] = _spi->transfer(0); // request value } _spi->cs_release(); // we are using 16 bits resolution q_long[0] = (int16_t) ((((uint16_t) received_packet[0]) << 8) + ((uint16_t) received_packet[1])); q_long[1] = (int16_t) ((((uint16_t) received_packet[4]) << 8) + ((uint16_t) received_packet[5])); q_long[2] = (int16_t) ((((uint16_t) received_packet[8]) << 8) + ((uint16_t) received_packet[9])); q_long[3] = (int16_t) ((((uint16_t) received_packet[12]) << 8) + ((uint16_t) received_packet[13])); // Take care of sign for (i = 0; i < 4; i++ ) { if(q_long[i] > 32767) { q_long[i] -= 65536; } } quaternion.q1 = ((float)q_long[0]) / 16384.0f; // convert from fixed point to float quaternion.q2 = ((float)q_long[2]) / 16384.0f; // convert from fixed point to float quaternion.q3 = ((float)q_long[1]) / 16384.0f; // convert from fixed point to float quaternion.q4 = ((float)-q_long[3]) / 16384.0f; // convert from fixed point to float } // dmp_set_gyro_calibration - apply default gyro calibration FS=2000dps and default orientation void AP_InertialSensor_MPU6000::dmp_set_gyro_calibration() { uint8_t regs[4]; regs[0]=0x4C; regs[1]=0xCD; regs[2]=0x6C; dmp_register_write(0x03, 0x7B, 0x03, regs); //FCFG_1 inv_set_gyro_calibration regs[0]=0x36; regs[1]=0x56; regs[2]=0x76; dmp_register_write(0x03, 0xAB, 0x03, regs); //FCFG_3 inv_set_gyro_calibration regs[0]=0x02; regs[1]=0xCB; regs[2]=0x47; regs[3]=0xA2; dmp_register_write(0x00, 0x68, 0x04, regs); //D_0_104 inv_set_gyro_calibration regs[0]=0x00; regs[1]=0x05; regs[2]=0x8B; regs[3]=0xC1; dmp_register_write(0x02, 0x18, 0x04, regs); //D_0_24 inv_set_gyro_calibration } // dmp_set_accel_calibration - apply default accel calibration scale=8g and default orientation void AP_InertialSensor_MPU6000::dmp_set_accel_calibration() { uint8_t regs[6]; regs[0]=0x00; regs[1]=0x00; regs[2]=0x00; regs[3]=0x00; dmp_register_write(0x01, 0x0C, 0x04, regs); //D_1_152 inv_set_accel_calibration regs[0]=0x0C; regs[1]=0xC9; regs[2]=0x2C; regs[3]=0x97; regs[4]=0x97; regs[5]=0x97; dmp_register_write(0x03, 0x7F, 0x06, regs); //FCFG_2 inv_set_accel_calibration regs[0]=0x26; regs[1]=0x46; regs[2]=0x66; dmp_register_write(0x03, 0x89, 0x03, regs); //FCFG_7 inv_set_accel_calibration // accel range, 0x20,0x00 => 2g, 0x10,0x00=>4g regs= (1073741824/accel_scale*65536) //regs[0]=0x20; // 2g regs[0]=0x08; // 8g regs[1]=0x00; dmp_register_write(0x00, 0x6C, 0x02, regs); //D_0_108 inv_set_accel_calibration } // dmp_apply_endian_accel - set byte order of accelerometer values? void AP_InertialSensor_MPU6000::dmp_apply_endian_accel() { uint8_t regs[4]; regs[0]=0x00; regs[1]=0x00; regs[2]=0x40; regs[3]=0x00; dmp_register_write(0x01, 0xEC, 0x04, regs); //D_1_236 inv_apply_endian_accel } // dmp_set_mpu_sensors - to configure for SIX_AXIS output void AP_InertialSensor_MPU6000::dmp_set_mpu_sensors() { uint8_t regs[6]; regs[0]=0x0C; regs[1]=0xC9; regs[2]=0x2C; regs[3]=0x97; regs[4]=0x97; regs[5]=0x97; dmp_register_write(0x03, 0x7F, 0x06, regs); //FCFG_2 inv_set_mpu_sensors(INV_SIX_AXIS_GYRO_ACCEL); } // dmp_set_bias_from_no_motion - turn on bias from no motion void AP_InertialSensor_MPU6000::dmp_set_bias_from_no_motion() { uint8_t regs[4]; regs[0]=0x0D; regs[1]=0x35; regs[2]=0x5D; dmp_register_write(0x04, 0x02, 0x03, regs); //CFG_MOTION_BIAS inv_turn_on_bias_from_no_motion regs[0]=0x87; regs[1]=0x2D; regs[2]=0x35; regs[3]=0x3D; dmp_register_write(0x04, 0x09, 0x04, regs); //FCFG_5 inv_set_bias_update( INV_BIAS_FROM_NO_MOTION ); } // dmp_set_bias_none - turn off internal bias correction (we will use this and we handle the gyro bias correction externally) void AP_InertialSensor_MPU6000::dmp_set_bias_none() { uint8_t regs[4]; regs[0]=0x98; regs[1]=0x98; regs[2]=0x98; dmp_register_write(0x04, 0x02, 0x03, regs); //CFG_MOTION_BIAS inv_turn_off_bias_from_no_motion regs[0]=0x87; regs[1]=0x2D; regs[2]=0x35; regs[3]=0x3D; dmp_register_write(0x04, 0x09, 0x04, regs); //FCFG_5 inv_set_bias_update( INV_BIAS_FROM_NO_MOTION ); } // dmp_set_fifo_interrupt void AP_InertialSensor_MPU6000::dmp_set_fifo_interrupt() { uint8_t regs[1]; regs[0]=0xFE; dmp_register_write(0x07, 0x86, 0x01, regs); //CFG_6 inv_set_fifo_interupt } // dmp_send_quaternion - send quaternion data to FIFO void AP_InertialSensor_MPU6000::dmp_send_quaternion() { uint8_t regs[5]; regs[0]=0xF1; regs[1]=0x20; regs[2]=0x28; regs[3]=0x30; regs[4]=0x38; dmp_register_write(0x07, 0x41, 0x05, regs); //CFG_8 inv_send_quaternion regs[0]=0x30; dmp_register_write(0x07, 0x7E, 0x01, regs); //CFG_16 inv_set_footer } // dmp_send_gyro - send gyro data to FIFO void AP_InertialSensor_MPU6000::dmp_send_gyro() { uint8_t regs[4]; regs[0]=0xF1; regs[1]=0x28; regs[2]=0x30; regs[3]=0x38; dmp_register_write(0x07, 0x47, 0x04, regs); //CFG_9 inv_send_gyro } // dmp_send_accel - send accel data to FIFO void AP_InertialSensor_MPU6000::dmp_send_accel() { uint8_t regs[54]; regs[0]=0xF1; regs[1]=0x28; regs[2]=0x30; regs[3]=0x38; dmp_register_write(0x07, 0x6C, 0x04, regs); //CFG_12 inv_send_accel } // This functions defines the rate at wich attitude data is send to FIFO // Rate: 0 => SAMPLE_RATE(ex:200Hz), 1=> SAMPLE_RATE/2 (ex:100Hz), 2=> SAMPLE_RATE/3 (ex:66Hz) // rate constant definitions in MPU6000.h void AP_InertialSensor_MPU6000::dmp_set_fifo_rate(uint8_t rate) { uint8_t regs[2]; regs[0]=0x00; regs[1]=rate; dmp_register_write(0x02, 0x16, 0x02, regs); //D_0_22 inv_set_fifo_rate } // This function defines the weight of the accel on the sensor fusion // default value is 0x80 // The official invensense name is inv_key_0_96 (??) void AP_InertialSensor_MPU6000::dmp_set_sensor_fusion_accel_gain(uint8_t gain) { //inv_key_0_96 register_write(MPUREG_BANK_SEL,0x00); register_write(MPUREG_MEM_START_ADDR, 0x60); _spi->cs_assert(); _spi->transfer(MPUREG_MEM_R_W); _spi->transfer(0x00); _spi->transfer(gain); // Original : 0x80 To test: 0x40, 0x20 (too less) _spi->transfer(0x00); _spi->transfer(0x00); _spi->cs_release(); } // Load initial memory values into DMP memory banks void AP_InertialSensor_MPU6000::dmp_load_mem() { for(int i = 0; i < 7; i++) { register_write(MPUREG_BANK_SEL,i); //MPUREG_BANK_SEL for(uint8_t j = 0; j < 16; j++) { uint8_t start_addy = j * 0x10; register_write(MPUREG_MEM_START_ADDR,start_addy); _spi->cs_assert(); _spi->transfer(MPUREG_MEM_R_W); for(int k = 0; k < 16; k++) { uint8_t byteToSend = pgm_read_byte((const prog_char *)&(dmpMem[i][j][k])); _spi->transfer((uint8_t) byteToSend); } _spi->cs_release(); } } register_write(MPUREG_BANK_SEL,7); //MPUREG_BANK_SEL for(uint8_t j = 0; j < 8; j++) { uint8_t start_addy = j * 0x10; register_write(MPUREG_MEM_START_ADDR,start_addy); _spi->cs_assert(); _spi->transfer(MPUREG_MEM_R_W); for(int k = 0; k < 16; k++) { uint8_t byteToSend = pgm_read_byte((const prog_char *)&(dmpMem[7][j][k])); _spi->transfer((uint8_t) byteToSend); } _spi->cs_release(); } register_write(MPUREG_MEM_START_ADDR,0x80); _spi->cs_assert(); _spi->transfer(MPUREG_MEM_R_W); for(int k = 0; k < 9; k++) { uint8_t byteToSend = pgm_read_byte((const prog_char *)&(dmpMem[7][8][k])); _spi->transfer((uint8_t) byteToSend); } _spi->cs_release(); } // ========= DMP MEMORY ================================ const uint8_t dmpMem[8][16][16] PROGMEM = { { { 0xFB, 0x00, 0x00, 0x3E, 0x00, 0x0B, 0x00, 0x36, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x00 } , { 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0xFA, 0x80, 0x00, 0x0B, 0x12, 0x82, 0x00, 0x01 } , { 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x28, 0x00, 0x00, 0xFF, 0xFF, 0x45, 0x81, 0xFF, 0xFF, 0xFA, 0x72, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x03, 0xE8, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x7F, 0xFF, 0xFF, 0xFE, 0x80, 0x01 } , { 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x3E, 0x03, 0x30, 0x40, 0x00, 0x00, 0x00, 0x02, 0xCA, 0xE3, 0x09, 0x3E, 0x80, 0x00, 0x00 } , { 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00 } , { 0x41, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x2A, 0x00, 0x00, 0x16, 0x55, 0x00, 0x00, 0x21, 0x82 } , { 0xFD, 0x87, 0x26, 0x50, 0xFD, 0x80, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x05, 0x80, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00 } , { 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x6F, 0x00, 0x02, 0x65, 0x32, 0x00, 0x00, 0x5E, 0xC0 } , { 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0xFB, 0x8C, 0x6F, 0x5D, 0xFD, 0x5D, 0x08, 0xD9, 0x00, 0x7C, 0x73, 0x3B, 0x00, 0x6C, 0x12, 0xCC } , { 0x32, 0x00, 0x13, 0x9D, 0x32, 0x00, 0xD0, 0xD6, 0x32, 0x00, 0x08, 0x00, 0x40, 0x00, 0x01, 0xF4 } , { 0xFF, 0xE6, 0x80, 0x79, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD0, 0xD6, 0x00, 0x00, 0x27, 0x10 } } , { { 0xFB, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0xFA, 0x36, 0xFF, 0xBC, 0x30, 0x8E, 0x00, 0x05, 0xFB, 0xF0, 0xFF, 0xD9, 0x5B, 0xC8 } , { 0xFF, 0xD0, 0x9A, 0xBE, 0x00, 0x00, 0x10, 0xA9, 0xFF, 0xF4, 0x1E, 0xB2, 0x00, 0xCE, 0xBB, 0xF7 } , { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00, 0x0C } , { 0xFF, 0xC2, 0x80, 0x00, 0x00, 0x01, 0x80, 0x00, 0x00, 0xCF, 0x80, 0x00, 0x40, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x14 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x03, 0x3F, 0x68, 0xB6, 0x79, 0x35, 0x28, 0xBC, 0xC6, 0x7E, 0xD1, 0x6C } , { 0x80, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0xB2, 0x6A, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0xF0, 0x00, 0x00, 0x00, 0x30 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x25, 0x4D, 0x00, 0x2F, 0x70, 0x6D, 0x00, 0x00, 0x05, 0xAE, 0x00, 0x0C, 0x02, 0xD0 } } , { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x01, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x01, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0xFF, 0xEF, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00 } , { 0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } , { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } , { { 0xD8, 0xDC, 0xBA, 0xA2, 0xF1, 0xDE, 0xB2, 0xB8, 0xB4, 0xA8, 0x81, 0x91, 0xF7, 0x4A, 0x90, 0x7F } , { 0x91, 0x6A, 0xF3, 0xF9, 0xDB, 0xA8, 0xF9, 0xB0, 0xBA, 0xA0, 0x80, 0xF2, 0xCE, 0x81, 0xF3, 0xC2 } , { 0xF1, 0xC1, 0xF2, 0xC3, 0xF3, 0xCC, 0xA2, 0xB2, 0x80, 0xF1, 0xC6, 0xD8, 0x80, 0xBA, 0xA7, 0xDF } , { 0xDF, 0xDF, 0xF2, 0xA7, 0xC3, 0xCB, 0xC5, 0xB6, 0xF0, 0x87, 0xA2, 0x94, 0x24, 0x48, 0x70, 0x3C } , { 0x95, 0x40, 0x68, 0x34, 0x58, 0x9B, 0x78, 0xA2, 0xF1, 0x83, 0x92, 0x2D, 0x55, 0x7D, 0xD8, 0xB1 } , { 0xB4, 0xB8, 0xA1, 0xD0, 0x91, 0x80, 0xF2, 0x70, 0xF3, 0x70, 0xF2, 0x7C, 0x80, 0xA8, 0xF1, 0x01 } , { 0xB0, 0x98, 0x87, 0xD9, 0x43, 0xD8, 0x86, 0xC9, 0x88, 0xBA, 0xA1, 0xF2, 0x0E, 0xB8, 0x97, 0x80 } , { 0xF1, 0xA9, 0xDF, 0xDF, 0xDF, 0xAA, 0xDF, 0xDF, 0xDF, 0xF2, 0xAA, 0xC5, 0xCD, 0xC7, 0xA9, 0x0C } , { 0xC9, 0x2C, 0x97, 0x97, 0x97, 0x97, 0xF1, 0xA9, 0x89, 0x26, 0x46, 0x66, 0xB0, 0xB4, 0xBA, 0x80 } , { 0xAC, 0xDE, 0xF2, 0xCA, 0xF1, 0xB2, 0x8C, 0x02, 0xA9, 0xB6, 0x98, 0x00, 0x89, 0x0E, 0x16, 0x1E } , { 0xB8, 0xA9, 0xB4, 0x99, 0x2C, 0x54, 0x7C, 0xB0, 0x8A, 0xA8, 0x96, 0x36, 0x56, 0x76, 0xF1, 0xB9 } , { 0xAF, 0xB4, 0xB0, 0x83, 0xC0, 0xB8, 0xA8, 0x97, 0x11, 0xB1, 0x8F, 0x98, 0xB9, 0xAF, 0xF0, 0x24 } , { 0x08, 0x44, 0x10, 0x64, 0x18, 0xF1, 0xA3, 0x29, 0x55, 0x7D, 0xAF, 0x83, 0xB5, 0x93, 0xAF, 0xF0 } , { 0x00, 0x28, 0x50, 0xF1, 0xA3, 0x86, 0x9F, 0x61, 0xA6, 0xDA, 0xDE, 0xDF, 0xD9, 0xFA, 0xA3, 0x86 } , { 0x96, 0xDB, 0x31, 0xA6, 0xD9, 0xF8, 0xDF, 0xBA, 0xA6, 0x8F, 0xC2, 0xC5, 0xC7, 0xB2, 0x8C, 0xC1 } , { 0xB8, 0xA2, 0xDF, 0xDF, 0xDF, 0xA3, 0xDF, 0xDF, 0xDF, 0xD8, 0xD8, 0xF1, 0xB8, 0xA8, 0xB2, 0x86 } } , { { 0xB4, 0x98, 0x0D, 0x35, 0x5D, 0xB8, 0xAA, 0x98, 0xB0, 0x87, 0x2D, 0x35, 0x3D, 0xB2, 0xB6, 0xBA } , { 0xAF, 0x8C, 0x96, 0x19, 0x8F, 0x9F, 0xA7, 0x0E, 0x16, 0x1E, 0xB4, 0x9A, 0xB8, 0xAA, 0x87, 0x2C } , { 0x54, 0x7C, 0xB9, 0xA3, 0xDE, 0xDF, 0xDF, 0xA3, 0xB1, 0x80, 0xF2, 0xC4, 0xCD, 0xC9, 0xF1, 0xB8 } , { 0xA9, 0xB4, 0x99, 0x83, 0x0D, 0x35, 0x5D, 0x89, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0xB5, 0x93, 0xA3 } , { 0x0E, 0x16, 0x1E, 0xA9, 0x2C, 0x54, 0x7C, 0xB8, 0xB4, 0xB0, 0xF1, 0x97, 0x83, 0xA8, 0x11, 0x84 } , { 0xA5, 0x09, 0x98, 0xA3, 0x83, 0xF0, 0xDA, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xD8, 0xF1, 0xA5 } , { 0x29, 0x55, 0x7D, 0xA5, 0x85, 0x95, 0x02, 0x1A, 0x2E, 0x3A, 0x56, 0x5A, 0x40, 0x48, 0xF9, 0xF3 } , { 0xA3, 0xD9, 0xF8, 0xF0, 0x98, 0x83, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0x97, 0x82, 0xA8, 0xF1 } , { 0x11, 0xF0, 0x98, 0xA2, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xDA, 0xF3, 0xDE, 0xD8, 0x83, 0xA5 } , { 0x94, 0x01, 0xD9, 0xA3, 0x02, 0xF1, 0xA2, 0xC3, 0xC5, 0xC7, 0xD8, 0xF1, 0x84, 0x92, 0xA2, 0x4D } , { 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9 } , { 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0x93, 0xA3, 0x4D } , { 0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9 } , { 0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0xA8, 0x8A, 0x9A } , { 0xF0, 0x28, 0x50, 0x78, 0x9E, 0xF3, 0x88, 0x18, 0xF1, 0x9F, 0x1D, 0x98, 0xA8, 0xD9, 0x08, 0xD8 } , { 0xC8, 0x9F, 0x12, 0x9E, 0xF3, 0x15, 0xA8, 0xDA, 0x12, 0x10, 0xD8, 0xF1, 0xAF, 0xC8, 0x97, 0x87 } } , { { 0x34, 0xB5, 0xB9, 0x94, 0xA4, 0x21, 0xF3, 0xD9, 0x22, 0xD8, 0xF2, 0x2D, 0xF3, 0xD9, 0x2A, 0xD8 } , { 0xF2, 0x35, 0xF3, 0xD9, 0x32, 0xD8, 0x81, 0xA4, 0x60, 0x60, 0x61, 0xD9, 0x61, 0xD8, 0x6C, 0x68 } , { 0x69, 0xD9, 0x69, 0xD8, 0x74, 0x70, 0x71, 0xD9, 0x71, 0xD8, 0xB1, 0xA3, 0x84, 0x19, 0x3D, 0x5D } , { 0xA3, 0x83, 0x1A, 0x3E, 0x5E, 0x93, 0x10, 0x30, 0x81, 0x10, 0x11, 0xB8, 0xB0, 0xAF, 0x8F, 0x94 } , { 0xF2, 0xDA, 0x3E, 0xD8, 0xB4, 0x9A, 0xA8, 0x87, 0x29, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x35, 0xDA } , { 0xF8, 0xD8, 0x87, 0x9A, 0x3D, 0xDA, 0xF8, 0xD8, 0xB1, 0xB9, 0xA4, 0x98, 0x85, 0x02, 0x2E, 0x56 } , { 0xA5, 0x81, 0x00, 0x0C, 0x14, 0xA3, 0x97, 0xB0, 0x8A, 0xF1, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9 } , { 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x84, 0x0D, 0xDA, 0x0E, 0xD8, 0xA3, 0x29, 0x83, 0xDA } , { 0x2C, 0x0E, 0xD8, 0xA3, 0x84, 0x49, 0x83, 0xDA, 0x2C, 0x4C, 0x0E, 0xD8, 0xB8, 0xB0, 0xA8, 0x8A } , { 0x9A, 0xF5, 0x20, 0xAA, 0xDA, 0xDF, 0xD8, 0xA8, 0x40, 0xAA, 0xD0, 0xDA, 0xDE, 0xD8, 0xA8, 0x60 } , { 0xAA, 0xDA, 0xD0, 0xDF, 0xD8, 0xF1, 0x97, 0x86, 0xA8, 0x31, 0x9B, 0x06, 0x99, 0x07, 0xAB, 0x97 } , { 0x28, 0x88, 0x9B, 0xF0, 0x0C, 0x20, 0x14, 0x40, 0xB8, 0xB0, 0xB4, 0xA8, 0x8C, 0x9C, 0xF0, 0x04 } , { 0x28, 0x51, 0x79, 0x1D, 0x30, 0x14, 0x38, 0xB2, 0x82, 0xAB, 0xD0, 0x98, 0x2C, 0x50, 0x50, 0x78 } , { 0x78, 0x9B, 0xF1, 0x1A, 0xB0, 0xF0, 0x8A, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x8B, 0x29, 0x51, 0x79 } , { 0x8A, 0x24, 0x70, 0x59, 0x8B, 0x20, 0x58, 0x71, 0x8A, 0x44, 0x69, 0x38, 0x8B, 0x39, 0x40, 0x68 } , { 0x8A, 0x64, 0x48, 0x31, 0x8B, 0x30, 0x49, 0x60, 0xA5, 0x88, 0x20, 0x09, 0x71, 0x58, 0x44, 0x68 } } , { { 0x11, 0x39, 0x64, 0x49, 0x30, 0x19, 0xF1, 0xAC, 0x00, 0x2C, 0x54, 0x7C, 0xF0, 0x8C, 0xA8, 0x04 } , { 0x28, 0x50, 0x78, 0xF1, 0x88, 0x97, 0x26, 0xA8, 0x59, 0x98, 0xAC, 0x8C, 0x02, 0x26, 0x46, 0x66 } , { 0xF0, 0x89, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x24, 0x70, 0x59, 0x44, 0x69, 0x38, 0x64, 0x48, 0x31 } , { 0xA9, 0x88, 0x09, 0x20, 0x59, 0x70, 0xAB, 0x11, 0x38, 0x40, 0x69, 0xA8, 0x19, 0x31, 0x48, 0x60 } , { 0x8C, 0xA8, 0x3C, 0x41, 0x5C, 0x20, 0x7C, 0x00, 0xF1, 0x87, 0x98, 0x19, 0x86, 0xA8, 0x6E, 0x76 } , { 0x7E, 0xA9, 0x99, 0x88, 0x2D, 0x55, 0x7D, 0x9E, 0xB9, 0xA3, 0x8A, 0x22, 0x8A, 0x6E, 0x8A, 0x56 } , { 0x8A, 0x5E, 0x9F, 0xB1, 0x83, 0x06, 0x26, 0x46, 0x66, 0x0E, 0x2E, 0x4E, 0x6E, 0x9D, 0xB8, 0xAD } , { 0x00, 0x2C, 0x54, 0x7C, 0xF2, 0xB1, 0x8C, 0xB4, 0x99, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0x81, 0x91 } , { 0xAC, 0x38, 0xAD, 0x3A, 0xB5, 0x83, 0x91, 0xAC, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8 } , { 0x6D, 0xD9, 0x68, 0xD8, 0x8C, 0x9D, 0xAE, 0x29, 0xD9, 0x04, 0xAE, 0xD8, 0x51, 0xD9, 0x04, 0xAE } , { 0xD8, 0x79, 0xD9, 0x04, 0xD8, 0x81, 0xF3, 0x9D, 0xAD, 0x00, 0x8D, 0xAE, 0x19, 0x81, 0xAD, 0xD9 } , { 0x01, 0xD8, 0xF2, 0xAE, 0xDA, 0x26, 0xD8, 0x8E, 0x91, 0x29, 0x83, 0xA7, 0xD9, 0xAD, 0xAD, 0xAD } , { 0xAD, 0xF3, 0x2A, 0xD8, 0xD8, 0xF1, 0xB0, 0xAC, 0x89, 0x91, 0x3E, 0x5E, 0x76, 0xF3, 0xAC, 0x2E } , { 0x2E, 0xF1, 0xB1, 0x8C, 0x5A, 0x9C, 0xAC, 0x2C, 0x28, 0x28, 0x28, 0x9C, 0xAC, 0x30, 0x18, 0xA8 } , { 0x98, 0x81, 0x28, 0x34, 0x3C, 0x97, 0x24, 0xA7, 0x28, 0x34, 0x3C, 0x9C, 0x24, 0xF2, 0xB0, 0x89 } , { 0xAC, 0x91, 0x2C, 0x4C, 0x6C, 0x8A, 0x9B, 0x2D, 0xD9, 0xD8, 0xD8, 0x51, 0xD9, 0xD8, 0xD8, 0x79 } } , { { 0xD9, 0xD8, 0xD8, 0xF1, 0x9E, 0x88, 0xA3, 0x31, 0xDA, 0xD8, 0xD8, 0x91, 0x2D, 0xD9, 0x28, 0xD8 } , { 0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x83, 0x93, 0x35, 0x3D, 0x80, 0x25, 0xDA } , { 0xD8, 0xD8, 0x85, 0x69, 0xDA, 0xD8, 0xD8, 0xB4, 0x93, 0x81, 0xA3, 0x28, 0x34, 0x3C, 0xF3, 0xAB } , { 0x8B, 0xF8, 0xA3, 0x91, 0xB6, 0x09, 0xB4, 0xD9, 0xAB, 0xDE, 0xFA, 0xB0, 0x87, 0x9C, 0xB9, 0xA3 } , { 0xDD, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x95, 0xF1, 0xA3, 0xA3, 0xA3, 0x9D, 0xF1, 0xA3, 0xA3, 0xA3 } , { 0xA3, 0xF2, 0xA3, 0xB4, 0x90, 0x80, 0xF2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3 } , { 0xA3, 0xB2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB0, 0x87, 0xB5, 0x99, 0xF1, 0xA3, 0xA3, 0xA3 } , { 0x98, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x97, 0xA3, 0xA3, 0xA3, 0xA3, 0xF3, 0x9B, 0xA3, 0xA3, 0xDC } , { 0xB9, 0xA7, 0xF1, 0x26, 0x26, 0x26, 0xD8, 0xD8, 0xFF } } };