/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include "AP_InertialSensor.h" #include #include extern const AP_HAL::HAL& hal; #define FLASH_LEDS(on) do { if (flash_leds_cb != NULL) flash_leds_cb(on); } while (0) #define SAMPLE_UNIT 1 // Class level parameters const AP_Param::GroupInfo AP_InertialSensor::var_info[] PROGMEM = { // @Param: PRODUCT_ID // @DisplayName: IMU Product ID // @Description: Which type of IMU is installed (read-only) // @User: Standard AP_GROUPINFO("PRODUCT_ID", 0, AP_InertialSensor, _product_id, 0), // @Param: ACCSCAL // @DisplayName: Acceleration Scaling // @Description: Calibration scaling of x/y/z acceleration axes. This is setup using the acceleration calibration // @User: Advanced AP_GROUPINFO("ACCSCAL", 1, AP_InertialSensor, _accel_scale, 0), // @Param: ACCOFFS // @DisplayName: Acceleration Offsets // @Description: Calibration offsets of x/y/z acceleration axes. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @User: Advanced AP_GROUPINFO("ACCOFFS", 2, AP_InertialSensor, _accel_offset, 0), // @Param: GYROFFS // @DisplayName: Gyro offsets // @Description: Calibration offsets of x/y/z gyroscope axes. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced AP_GROUPINFO("GYROFFS", 3, AP_InertialSensor, _gyro_offset, 0), // @Param: MPU6K_FILTER // @DisplayName: MPU6000 filter frequency // @Description: Filter frequency to ask the MPU6000 to apply to samples. This can be set to a lower value to try to cope with very high vibration levels in aircraft. The default value on ArduPlane and APMrover2 is 20Hz. The default value on ArduCopter is 42Hz. This option takes effect on the next reboot or gyro initialisation // @Units: Hz // @Values: 0:Default,5:5Hz,10:10Hz,20:20Hz,42:42Hz,98:98Hz // @User: Advanced AP_GROUPINFO("MPU6K_FILTER", 4, AP_InertialSensor, _mpu6000_filter, 0), AP_GROUPEND }; AP_InertialSensor::AP_InertialSensor() { } void AP_InertialSensor::init( Start_style style, Sample_rate sample_rate, void (*flash_leds_cb)(bool on)) { _product_id = _init_sensor(sample_rate); // check scaling Vector3f accel_scale = _accel_scale.get(); if( accel_scale.x == 0 && accel_scale.y == 0 && accel_scale.z == 0 ) { accel_scale.x = accel_scale.y = accel_scale.z = 1.0; _accel_scale.set(accel_scale); } if (WARM_START != style) { // do cold-start calibration for gyro only _init_gyro(flash_leds_cb); } } // save parameters to eeprom void AP_InertialSensor::_save_parameters() { _product_id.save(); _accel_scale.save(); _accel_offset.save(); _gyro_offset.save(); } void AP_InertialSensor::init_gyro(void (*flash_leds_cb)(bool on)) { _init_gyro(flash_leds_cb); // save calibration _save_parameters(); } void AP_InertialSensor::_init_gyro(void (*flash_leds_cb)(bool on)) { Vector3f last_average, best_avg; Vector3f ins_gyro; float best_diff = 0; // cold start hal.scheduler->delay(100); hal.console->printf_P(PSTR("Init Gyro")); // remove existing gyro offsets _gyro_offset = Vector3f(0,0,0); for(int8_t c = 0; c < 25; c++) { // Mostly we are just flashing the LED's here // to tell the user to keep the IMU still FLASH_LEDS(true); hal.scheduler->delay(20); update(); ins_gyro = get_gyro(); FLASH_LEDS(false); hal.scheduler->delay(20); } // the strategy is to average 200 points over 1 second, then do it // again and see if the 2nd average is within a small margin of // the first last_average.zero(); // we try to get a good calibration estimate for up to 10 seconds // if the gyros are stable, we should get it in 2 seconds for (int16_t j = 0; j <= 10; j++) { Vector3f gyro_sum, gyro_avg, gyro_diff; float diff_norm; uint8_t i; hal.console->printf_P(PSTR("*")); gyro_sum.zero(); for (i=0; i<200; i++) { update(); ins_gyro = get_gyro(); gyro_sum += ins_gyro; if (i % 40 == 20) { FLASH_LEDS(true); } else if (i % 40 == 0) { FLASH_LEDS(false); } hal.scheduler->delay(5); } gyro_avg = gyro_sum / i; gyro_diff = last_average - gyro_avg; diff_norm = gyro_diff.length(); if (j == 0) { best_diff = diff_norm; best_avg = gyro_avg; } else if (gyro_diff.length() < ToRad(0.04)) { // we want the average to be within 0.1 bit, which is 0.04 degrees/s last_average = (gyro_avg * 0.5) + (last_average * 0.5); _gyro_offset = last_average; // all done return; } else if (diff_norm < best_diff) { best_diff = diff_norm; best_avg = (gyro_avg * 0.5) + (last_average * 0.5); } last_average = gyro_avg; } // we've kept the user waiting long enough - use the best pair we // found so far hal.console->printf_P(PSTR("\ngyro did not converge: diff=%f dps\n"), ToDeg(best_diff)); _gyro_offset = best_avg; } void AP_InertialSensor::init_accel(void (*flash_leds_cb)(bool on)) { _init_accel(flash_leds_cb); // save calibration _save_parameters(); } void AP_InertialSensor::_init_accel(void (*flash_leds_cb)(bool on)) { int8_t flashcount = 0; Vector3f ins_accel; Vector3f prev; Vector3f accel_offset; float total_change; float max_offset; // cold start hal.scheduler->delay(100); hal.console->printf_P(PSTR("Init Accel")); // clear accelerometer offsets and scaling _accel_offset = Vector3f(0,0,0); _accel_scale = Vector3f(1,1,1); // initialise accel offsets to a large value the first time // this will force us to calibrate accels at least twice accel_offset = Vector3f(500, 500, 500); // loop until we calculate acceptable offsets do { // get latest accelerometer values update(); ins_accel = get_accel(); // store old offsets prev = accel_offset; // get new offsets accel_offset = ins_accel; // We take some readings... for(int8_t i = 0; i < 50; i++) { hal.scheduler->delay(20); update(); ins_accel = get_accel(); // low pass filter the offsets accel_offset = accel_offset * 0.9 + ins_accel * 0.1; // display some output to the user if(flashcount == 5) { hal.console->printf_P(PSTR("*")); FLASH_LEDS(true); } if(flashcount >= 10) { flashcount = 0; FLASH_LEDS(false); } flashcount++; } // null gravity from the Z accel // TO-DO: replace with gravity #define form location.cpp accel_offset.z += GRAVITY; total_change = fabs(prev.x - accel_offset.x) + fabs(prev.y - accel_offset.y) + fabs(prev.z - accel_offset.z); max_offset = (accel_offset.x > accel_offset.y) ? accel_offset.x : accel_offset.y; max_offset = (max_offset > accel_offset.z) ? max_offset : accel_offset.z; hal.scheduler->delay(500); } while ( total_change > AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE || max_offset > AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET); // set the global accel offsets _accel_offset = accel_offset; hal.console->printf_P(PSTR(" ")); } #if !defined( __AVR_ATmega1280__ ) // calibrate_accel - perform accelerometer calibration including providing user // instructions and feedback Gauss-Newton accel calibration routines borrowed // from Rolfe Schmidt blog post describing the method: // http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ // original sketch available at // http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde bool AP_InertialSensor::calibrate_accel(void (*flash_leds_cb)(bool on), AP_HAL::BetterStream* c) { Vector3f samples[6]; Vector3f new_offsets; Vector3f new_scaling; Vector3f orig_offset; Vector3f orig_scale; // backup original offsets and scaling orig_offset = _accel_offset.get(); orig_scale = _accel_scale.get(); // clear accelerometer offsets and scaling _accel_offset = Vector3f(0,0,0); _accel_scale = Vector3f(1,1,1); // capture data from 6 positions for (int8_t i=0; i<6; i++) { const prog_char_t *msg; // display message to user switch ( i ) { case 0: msg = PSTR("level"); break; case 1: msg = PSTR("on it's left side"); break; case 2: msg = PSTR("on it's right side"); break; case 3: msg = PSTR("nose down"); break; case 4: msg = PSTR("nose up"); break; case 5: msg = PSTR("on it's back"); break; } c->printf_P(PSTR("USER: Place APM %S and press any key.\n"), msg); // wait for user input while (!c->available()) { hal.scheduler->delay(20); } // clear input buffer while( c->available() ) { c->read(); } // clear out any existing samples from ins update(); // wait until we have 32 samples while( num_samples_available() < 32 * SAMPLE_UNIT ) { hal.scheduler->delay(10); } // read samples from ins update(); // capture sample samples[i] = get_accel(); } // run the calibration routine if( _calibrate_accel(samples, new_offsets, new_scaling) ) { c->printf_P(PSTR("Calibration successful\n")); // set and save calibration _accel_offset.set(new_offsets); _accel_scale.set(new_scaling); _save_parameters(); return true; } c->printf_P(PSTR("Calibration failed (%.1f %.1f %.1f %.1f %.1f %.1f)\n"), new_offsets.x, new_offsets.y, new_offsets.z, new_scaling.x, new_scaling.y, new_scaling.z); // restore original scaling and offsets _accel_offset.set(orig_offset); _accel_scale.set(orig_scale); return false; } // _calibrate_model - perform low level accel calibration // accel_sample are accelerometer samples collected in 6 different positions // accel_offsets are output from the calibration routine // accel_scale are output from the calibration routine // returns true if successful bool AP_InertialSensor::_calibrate_accel( Vector3f accel_sample[6], Vector3f& accel_offsets, Vector3f& accel_scale ) { int16_t i; int16_t num_iterations = 0; float eps = 0.000000001; float change = 100.0; float data[3]; float beta[6]; float delta[6]; float ds[6]; float JS[6][6]; bool success = true; // reset beta[0] = beta[1] = beta[2] = 0; beta[3] = beta[4] = beta[5] = 1.0/GRAVITY; while( num_iterations < 20 && change > eps ) { num_iterations++; _calibrate_reset_matrices(ds, JS); for( i=0; i<6; i++ ) { data[0] = accel_sample[i].x; data[1] = accel_sample[i].y; data[2] = accel_sample[i].z; _calibrate_update_matrices(ds, JS, beta, data); } _calibrate_find_delta(ds, JS, delta); change = delta[0]*delta[0] + delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2] + delta[3]*delta[3] / (beta[3]*beta[3]) + delta[4]*delta[4] / (beta[4]*beta[4]) + delta[5]*delta[5] / (beta[5]*beta[5]); for( i=0; i<6; i++ ) { beta[i] -= delta[i]; } } // copy results out accel_scale.x = beta[3] * GRAVITY; accel_scale.y = beta[4] * GRAVITY; accel_scale.z = beta[5] * GRAVITY; accel_offsets.x = beta[0] * accel_scale.x; accel_offsets.y = beta[1] * accel_scale.y; accel_offsets.z = beta[2] * accel_scale.z; // sanity check scale if( accel_scale.is_nan() || fabs(accel_scale.x-1.0) > 0.1 || fabs(accel_scale.y-1.0) > 0.1 || fabs(accel_scale.z-1.0) > 0.1 ) { success = false; } // sanity check offsets (2.0 is roughly 2/10th of a G, 5.0 is roughly half a G) if( accel_offsets.is_nan() || fabs(accel_offsets.x) > 2.0 || fabs(accel_offsets.y) > 2.0 || fabs(accel_offsets.z) > 3.0 ) { success = false; } // return success or failure return success; } void AP_InertialSensor::_calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]) { int16_t j, k; float dx, b; float residual = 1.0; float jacobian[6]; for( j=0; j<3; j++ ) { b = beta[3+j]; dx = (float)data[j] - beta[j]; residual -= b*b*dx*dx; jacobian[j] = 2.0*b*b*dx; jacobian[3+j] = -2.0*b*dx*dx; } for( j=0; j<6; j++ ) { dS[j] += jacobian[j]*residual; for( k=0; k<6; k++ ) { JS[j][k] += jacobian[j]*jacobian[k]; } } } // _calibrate_reset_matrices - clears matrices void AP_InertialSensor::_calibrate_reset_matrices(float dS[6], float JS[6][6]) { int16_t j,k; for( j=0; j<6; j++ ) { dS[j] = 0.0; for( k=0; k<6; k++ ) { JS[j][k] = 0.0; } } } void AP_InertialSensor::_calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]) { //Solve 6-d matrix equation JS*x = dS //first put in upper triangular form int16_t i,j,k; float mu; //make upper triangular for( i=0; i<6; i++ ) { //eliminate all nonzero entries below JS[i][i] for( j=i+1; j<6; j++ ) { mu = JS[i][j]/JS[i][i]; if( mu != 0.0 ) { dS[j] -= mu*dS[i]; for( k=j; k<6; k++ ) { JS[k][j] -= mu*JS[k][i]; } } } } //back-substitute for( i=5; i>=0; i-- ) { dS[i] /= JS[i][i]; JS[i][i] = 1.0; for( j=0; j