/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsSingle.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsCoax.h" #include extern const AP_HAL::HAL& hal; // init void AP_MotorsCoax::init(motor_frame_class frame_class, motor_frame_type frame_type) { _servo1 = SRV_Channels::get_channel_for(SRV_Channel::k_motor1, CH_1); _servo2 = SRV_Channels::get_channel_for(SRV_Channel::k_motor2, CH_2); _servo3 = SRV_Channels::get_channel_for(SRV_Channel::k_motor3, CH_3); _servo4 = SRV_Channels::get_channel_for(SRV_Channel::k_motor4, CH_4); if (!_servo1 || !_servo2 || !_servo3 || !_servo4) { gcs().send_text(MAV_SEVERITY_ERROR, "MotorsCoax: unable to setup output channels"); // don't set initialised_ok return; } // set the motor_enabled flag so that the main ESC can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_5] = true; motor_enabled[AP_MOTORS_MOT_6] = true; // we set four servos to angle _servo1->set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); _servo2->set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); _servo3->set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); _servo4->set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); // record successful initialisation if what we setup was the desired frame_class _flags.initialised_ok = (frame_class == MOTOR_FRAME_COAX); } // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void AP_MotorsCoax::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) { _flags.initialised_ok = (frame_class == MOTOR_FRAME_COAX); } // set update rate to motors - a value in hertz void AP_MotorsCoax::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; uint32_t mask = 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6 ; rc_set_freq(mask, _speed_hz); } void AP_MotorsCoax::output_to_motors() { switch (_spool_mode) { case SHUT_DOWN: // sends minimum values out to the motors rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_roll_radio_passthrough, _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_pitch_radio_passthrough, _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(-_roll_radio_passthrough, _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(-_pitch_radio_passthrough, _servo4)); rc_write(AP_MOTORS_MOT_5, get_pwm_output_min()); rc_write(AP_MOTORS_MOT_6, get_pwm_output_min()); break; case SPIN_WHEN_ARMED: // sends output to motors when armed but not flying rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[0], _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[1], _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[2], _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_spin_up_ratio * _actuator_out[3], _servo4)); rc_write(AP_MOTORS_MOT_5, calc_spin_up_to_pwm()); rc_write(AP_MOTORS_MOT_6, calc_spin_up_to_pwm()); break; case SPOOL_UP: case THROTTLE_UNLIMITED: case SPOOL_DOWN: // set motor output based on thrust requests rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_actuator_out[0], _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_actuator_out[1], _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_actuator_out[2], _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_actuator_out[3], _servo4)); rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_yt_ccw)); rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_yt_cw)); break; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsCoax::get_motor_mask() { uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 | 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6; return rc_map_mask(mask); } // sends commands to the motors void AP_MotorsCoax::output_armed_stabilizing() { float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0 float thrust_min_rpy; // the minimum throttle setting that will not limit the roll and pitch output float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy float thrust_out; // float rp_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float actuator_allowed = 0.0f; // amount of yaw we can fit in // apply voltage and air pressure compensation const float compensation_gain = get_compensation_gain(); roll_thrust = _roll_in * compensation_gain; pitch_thrust = _pitch_in * compensation_gain; yaw_thrust = _yaw_in * compensation_gain; throttle_thrust = get_throttle() * compensation_gain; throttle_avg_max = _throttle_avg_max * compensation_gain; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max); float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust)); // calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw if (is_zero(rp_thrust_max)) { rp_scale = 1.0f; } else { rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), 0.5f*(float)_yaw_headroom/1000.0f)) / rp_thrust_max, 0.0f, 1.0f); if (rp_scale < 1.0f) { limit.roll_pitch = true; } } actuator_allowed = 2.0f * (1.0f - rp_scale * rp_thrust_max); if (fabsf(yaw_thrust) > actuator_allowed) { yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed); limit.yaw = true; } // calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces thrust_min_rpy = MAX(fabsf(rp_scale * rp_thrust_max), fabsf(yaw_thrust)); thr_adj = throttle_thrust - throttle_avg_max; if (thr_adj < (thrust_min_rpy - throttle_avg_max)) { // Throttle can't be reduced to the desired level because this would reduce airflow over // the control surfaces preventing roll and pitch reaching the desired level. thr_adj = MIN(thrust_min_rpy, throttle_avg_max) - throttle_avg_max; } // calculate the throttle setting for the lift fan thrust_out = throttle_avg_max + thr_adj; if (fabsf(yaw_thrust) > thrust_out) { yaw_thrust = constrain_float(yaw_thrust, -thrust_out, thrust_out); limit.yaw = true; } _thrust_yt_ccw = thrust_out + 0.5f * yaw_thrust; _thrust_yt_cw = thrust_out - 0.5f * yaw_thrust; // limit thrust out for calculation of actuator gains float thrust_out_actuator = constrain_float(MAX(_throttle_hover*0.5f,thrust_out), 0.5f, 1.0f); if (is_zero(thrust_out)) { limit.roll_pitch = true; } // force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared // static thrust is proportional to the airflow velocity squared // therefore the torque of the roll and pitch actuators should be approximately proportional to // the angle of attack multiplied by the static thrust. _actuator_out[0] = roll_thrust/thrust_out_actuator; _actuator_out[1] = pitch_thrust/thrust_out_actuator; if (fabsf(_actuator_out[0]) > 1.0f) { limit.roll_pitch = true; _actuator_out[0] = constrain_float(_actuator_out[0], -1.0f, 1.0f); } if (fabsf(_actuator_out[1]) > 1.0f) { limit.roll_pitch = true; _actuator_out[1] = constrain_float(_actuator_out[1], -1.0f, 1.0f); } _actuator_out[2] = -_actuator_out[0]; _actuator_out[3] = -_actuator_out[1]; } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsCoax::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // flap servo 1 rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // flap servo 2 rc_write(AP_MOTORS_MOT_2, pwm); break; case 3: // flap servo 3 rc_write(AP_MOTORS_MOT_3, pwm); break; case 4: // flap servo 4 rc_write(AP_MOTORS_MOT_4, pwm); break; case 5: // motor 1 rc_write(AP_MOTORS_MOT_5, pwm); break; case 6: // motor 2 rc_write(AP_MOTORS_MOT_6, pwm); break; default: // do nothing break; } }