/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Septentrio GPS driver for ArduPilot. // Code by Michael Oborne // #define ALLOW_DOUBLE_MATH_FUNCTIONS #include "AP_GPS.h" #include "AP_GPS_SBF.h" #include extern const AP_HAL::HAL& hal; #define SBF_DEBUGGING 0 #if SBF_DEBUGGING # define Debug(fmt, args ...) \ do { \ hal.console->printf("%s:%d: " fmt "\n", \ __FUNCTION__, __LINE__, \ ## args); \ hal.scheduler->delay(1); \ } while(0) #else # define Debug(fmt, args ...) #endif #define SBF_EXCESS_COMMAND_BYTES 5 // 2 start bytes + validity byte + space byte + endline byte #define RX_ERROR_MASK (CONGESTION | \ MISSEDEVENT | \ CPUOVERLOAD | \ INVALIDCONFIG | \ OUTOFGEOFENCE) AP_GPS_SBF::AP_GPS_SBF(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; port->write((const uint8_t*)_port_enable, strlen(_port_enable)); _config_last_ack_time = AP_HAL::millis(); } // Process all bytes available from the stream // bool AP_GPS_SBF::read(void) { bool ret = false; uint32_t available_bytes = port->available(); for (uint32_t i = 0; i < available_bytes; i++) { uint8_t temp = port->read(); ret |= parse(temp); } if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE) { if (_init_blob_index < ARRAY_SIZE(_initialisation_blob)) { uint32_t now = AP_HAL::millis(); const char *init_str = _initialisation_blob[_init_blob_index]; if (now > _init_blob_time) { if (now > _config_last_ack_time + 2500) { // try to enable input on the GPS port if we have not made progress on configuring it Debug("SBF Sending port enable"); port->write((const uint8_t*)_port_enable, strlen(_port_enable)); _config_last_ack_time = now; } else { Debug("SBF sending init string: %s", init_str); port->write((const uint8_t*)init_str, strlen(init_str)); } _init_blob_time = now + 1000; } } else if (gps._raw_data == 2) { // only manage disarm/rearms when the user opts into it if (hal.util->get_soft_armed()) { _has_been_armed = true; } else if (_has_been_armed && (RxState & SBF_DISK_MOUNTED)) { // since init is done at this point and unmounting should be rate limited, // take over the _init_blob_time variable uint32_t now = AP_HAL::millis(); if (now > _init_blob_time) { unmount_disk(); _init_blob_time = now + 1000; } } } } return ret; } bool AP_GPS_SBF::parse(uint8_t temp) { switch (sbf_msg.sbf_state) { default: case sbf_msg_parser_t::PREAMBLE1: if (temp == SBF_PREAMBLE1) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE2; sbf_msg.read = 0; } break; case sbf_msg_parser_t::PREAMBLE2: if (temp == SBF_PREAMBLE2) { sbf_msg.sbf_state = sbf_msg_parser_t::CRC1; } else if (temp == 'R') { Debug("SBF got a response\n"); sbf_msg.sbf_state = sbf_msg_parser_t::COMMAND_LINE; } else { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; } break; case sbf_msg_parser_t::CRC1: sbf_msg.crc = temp; sbf_msg.sbf_state = sbf_msg_parser_t::CRC2; break; case sbf_msg_parser_t::CRC2: sbf_msg.crc += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID1; break; case sbf_msg_parser_t::BLOCKID1: sbf_msg.blockid = temp; sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID2; break; case sbf_msg_parser_t::BLOCKID2: sbf_msg.blockid += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH1; break; case sbf_msg_parser_t::LENGTH1: sbf_msg.length = temp; sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH2; break; case sbf_msg_parser_t::LENGTH2: sbf_msg.length += (uint16_t)(temp << 8); sbf_msg.sbf_state = sbf_msg_parser_t::DATA; if (sbf_msg.length % 4 != 0) { sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; Debug("bad packet length=%u\n", (unsigned)sbf_msg.length); } if (sbf_msg.length < 8) { Debug("bad packet length=%u\n", (unsigned)sbf_msg.length); sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; crc_error_counter++; // this is a probable buffer overflow, but this // indicates not enough bytes to do a crc break; } break; case sbf_msg_parser_t::DATA: if (sbf_msg.read < sizeof(sbf_msg.data)) { sbf_msg.data.bytes[sbf_msg.read] = temp; } sbf_msg.read++; if (sbf_msg.read >= (sbf_msg.length - 8)) { if (sbf_msg.read > sizeof(sbf_msg.data)) { // not interested in these large messages sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; break; } uint16_t crc = crc16_ccitt((uint8_t*)&sbf_msg.blockid, 2, 0); crc = crc16_ccitt((uint8_t*)&sbf_msg.length, 2, crc); crc = crc16_ccitt((uint8_t*)&sbf_msg.data, sbf_msg.length - 8, crc); sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; if (sbf_msg.crc == crc) { return process_message(); } else { Debug("crc fail\n"); crc_error_counter++; } } break; case sbf_msg_parser_t::COMMAND_LINE: if (sbf_msg.read < (sizeof(sbf_msg.data) - 1)) { sbf_msg.data.bytes[sbf_msg.read] = temp; } else { // we don't have enough buffer to compare the commands // most probable cause is that a user injected a longer command then // we have buffer for, or it could be a corruption, either way we // simply ignore the result sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; break; } sbf_msg.read++; if (temp == '\n') { sbf_msg.data.bytes[sbf_msg.read] = 0; // received the result, lets assess it if (sbf_msg.data.bytes[0] == ':') { // valid command, determine if it was the one we were trying // to send in the configuration sequence if (_init_blob_index < ARRAY_SIZE(_initialisation_blob)) { if (!strncmp(_initialisation_blob[_init_blob_index], (char *)(sbf_msg.data.bytes + 2), sbf_msg.read - SBF_EXCESS_COMMAND_BYTES)) { Debug("SBF Ack Command: %s\n", sbf_msg.data.bytes); _init_blob_index++; _config_last_ack_time = AP_HAL::millis(); } else { Debug("SBF Ack command (unexpected): %s\n", sbf_msg.data.bytes); } } } else { // rejected command, send it out as a debug Debug("SBF NACK Command: %s\n", sbf_msg.data.bytes); } // resume normal parsing sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1; break; } break; } return false; } bool AP_GPS_SBF::process_message(void) { uint16_t blockid = (sbf_msg.blockid & 8191u); Debug("BlockID %d", blockid); switch (blockid) { case PVTGeodetic: { const msg4007 &temp = sbf_msg.data.msg4007u; // Update time state if (temp.WNc != 65535) { state.time_week = temp.WNc; state.time_week_ms = (uint32_t)(temp.TOW); } state.last_gps_time_ms = AP_HAL::millis(); // Update velocity state (don't use −2·10^10) if (temp.Vn > -200000) { state.velocity.x = (float)(temp.Vn); state.velocity.y = (float)(temp.Ve); state.velocity.z = (float)(-temp.Vu); state.have_vertical_velocity = true; float ground_vector_sq = state.velocity[0] * state.velocity[0] + state.velocity[1] * state.velocity[1]; state.ground_speed = (float)safe_sqrt(ground_vector_sq); state.ground_course = wrap_360(degrees(atan2f(state.velocity[1], state.velocity[0]))); state.rtk_age_ms = temp.MeanCorrAge * 10; // value is expressed as twice the rms error = int16 * 0.01/2 state.horizontal_accuracy = (float)temp.HAccuracy * 0.005f; state.vertical_accuracy = (float)temp.VAccuracy * 0.005f; state.have_horizontal_accuracy = true; state.have_vertical_accuracy = true; } // Update position state (don't use -2·10^10) if (temp.Latitude > -200000) { state.location.lat = (int32_t)(temp.Latitude * RAD_TO_DEG_DOUBLE * (double)1e7); state.location.lng = (int32_t)(temp.Longitude * RAD_TO_DEG_DOUBLE * (double)1e7); state.location.alt = (int32_t)(((float)temp.Height - temp.Undulation) * 1e2f); } if (temp.NrSV != 255) { state.num_sats = temp.NrSV; } Debug("temp.Mode=0x%02x\n", (unsigned)temp.Mode); switch (temp.Mode & 15) { case 0: // no pvt state.status = AP_GPS::NO_FIX; break; case 1: // standalone state.status = AP_GPS::GPS_OK_FIX_3D; break; case 2: // dgps state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 3: // fixed location state.status = AP_GPS::GPS_OK_FIX_3D; break; case 4: // rtk fixed state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; break; case 5: // rtk float state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; break; case 6: // sbas state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 7: // moving rtk fixed state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; break; case 8: // moving rtk float state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; break; } if ((temp.Mode & 64) > 0) { // gps is in base mode state.status = AP_GPS::NO_FIX; } else if ((temp.Mode & 128) > 0) { // gps only has 2d fix state.status = AP_GPS::GPS_OK_FIX_2D; } return true; } case DOP: { const msg4001 &temp = sbf_msg.data.msg4001u; state.hdop = temp.HDOP; state.vdop = temp.VDOP; break; } case ReceiverStatus: { const msg4014 &temp = sbf_msg.data.msg4014u; RxState = temp.RxState; if ((RxError & RX_ERROR_MASK) != (temp.RxError & RX_ERROR_MASK)) { gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF error changed (0x%08x/0x%08x)", state.instance + 1, RxError & RX_ERROR_MASK, temp.RxError & RX_ERROR_MASK); } RxError = temp.RxError; break; } case VelCovGeodetic: { const msg5908 &temp = sbf_msg.data.msg5908u; // select the maximum variance, as the EKF will apply it to all the columns in it's estimate // FIXME: Support returning the covariance matrix to the EKF float max_variance_squared = MAX(temp.Cov_VnVn, MAX(temp.Cov_VeVe, temp.Cov_VuVu)); if (is_positive(max_variance_squared)) { state.have_speed_accuracy = true; state.speed_accuracy = sqrt(max_variance_squared); } else { state.have_speed_accuracy = false; } break; } } return false; } void AP_GPS_SBF::broadcast_configuration_failure_reason(void) const { if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE && _init_blob_index < ARRAY_SIZE(_initialisation_blob)) { gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF is not fully configured (%d/%d)", state.instance + 1, _init_blob_index, ARRAY_SIZE(_initialisation_blob)); } } bool AP_GPS_SBF::is_configured (void) { return (gps._auto_config == AP_GPS::GPS_AUTO_CONFIG_DISABLE || _init_blob_index >= ARRAY_SIZE(_initialisation_blob)); } bool AP_GPS_SBF::is_healthy (void) const { return (RxError & RX_ERROR_MASK) == 0; } void AP_GPS_SBF::mount_disk (void) const { const char* command = "emd, DSK1, Mount\n"; Debug("Mounting disk"); port->write((const uint8_t*)command, strlen(command)); } void AP_GPS_SBF::unmount_disk (void) const { const char* command = "emd, DSK1, Unmount\n"; Debug("Unmounting disk"); port->write((const uint8_t*)command, strlen(command)); } bool AP_GPS_SBF::prepare_for_arming(void) { bool is_logging = true; // assume that its logging until proven otherwise if (gps._raw_data) { if (!(RxState & SBF_DISK_MOUNTED)){ is_logging = false; gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF disk is not mounted", state.instance + 1); // simply attempt to mount the disk, no need to check if the command was // ACK/NACK'd as we don't continuously attempt to remount the disk gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: Attempting to mount disk", state.instance + 1); mount_disk(); // reset the flag to indicate if we should be logging _has_been_armed = false; } else if (RxState & SBF_DISK_FULL) { is_logging = false; gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF disk is full", state.instance + 1); } else if (!(RxState & SBF_DISK_ACTIVITY)) { is_logging = false; gcs().send_text(MAV_SEVERITY_INFO, "GPS %d: SBF is not currently logging", state.instance + 1); } } return is_logging; }